# global configs Global: checkpoints: null pretrained_model: null output_dir: ./output/ device: gpu save_interval: 1 eval_during_train: True eval_interval: 1 epochs: 450 print_batch_step: 10 use_visualdl: False # used for static mode and model export image_shape: [3, 188, 188] save_inference_dir: ./inference # model ema EMA: decay: 0.9999 # model architecture Arch: name: TinyNet_B class_num: 1000 override_params: batch_norm_momentum: 0.9 batch_norm_epsilon: 1e-5 depth_trunc: round drop_connect_rate: 0.1 # loss function config for traing/eval process Loss: Train: - CELoss: weight: 1.0 epsilon: 0.1 Eval: - CELoss: weight: 1.0 Optimizer: name: RMSProp momentum: 0.9 rho: 0.9 epsilon: 0.001 one_dim_param_no_weight_decay: True lr: name: Step learning_rate: 0.048 step_size: 2.4 gamma: 0.97 warmup_epoch: 3 warmup_start_lr: 1e-6 regularizer: name: 'L2' coeff: 1e-5 # data loader for train and eval DataLoader: Train: dataset: name: ImageNetDataset image_root: ./dataset/ILSVRC2012/ cls_label_path: ./dataset/ILSVRC2012/train_list.txt transform_ops: - DecodeImage: to_rgb: True channel_first: False backend: pil - RandCropImage: size: 188 interpolation: bicubic backend: pil use_log_aspect: True - RandFlipImage: flip_code: 1 - ColorJitter: brightness: 0.4 contrast: 0.4 saturation: 0.4 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' sampler: name: DistributedBatchSampler batch_size: 128 drop_last: True shuffle: True loader: num_workers: 4 use_shared_memory: True Eval: dataset: name: ImageNetDataset image_root: ./dataset/ILSVRC2012/ cls_label_path: ./dataset/ILSVRC2012/val_list.txt transform_ops: - DecodeImage: to_np: False channel_first: False backend: pil - ResizeImage: resize_short: 214 interpolation: bicubic backend: pil - CropImage: size: 188 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' sampler: name: DistributedBatchSampler batch_size: 128 drop_last: False shuffle: False loader: num_workers: 4 use_shared_memory: True Infer: infer_imgs: docs/images/inference_deployment/whl_demo.jpg batch_size: 10 transforms: - DecodeImage: to_np: False channel_first: False - ResizeImage: resize_short: 214 interpolation: bicubic backend: pil - CropImage: size: 188 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - ToCHWImage: PostProcess: name: Topk topk: 5 class_id_map_file: ppcls/utils/imagenet1k_label_list.txt Metric: Train: - TopkAcc: topk: [1, 5] Eval: - TopkAcc: topk: [1, 5]