简体中文 | [English](README_en.md) # PaddleClas ## 简介 飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别任务的工具集,助力使用者训练出更好的视觉模型和应用落地。 **近期更新** - 2021.10.31 发布[PP-ShiTu技术报告](./docs/PP_ShiTu.pdf),新增饮料识别demo - 2021.10.23 发布轻量级图像识别系统PP-ShiTu,cpu上200ms即可完成在10w+库的图像识别。 [点击这里](./docs/zh_CN/quick_start/quick_start_recognition.md)立即体验 - 2021.09.17 发布PP-LCNet系列超轻量骨干网络模型, 在Intel CPU上有较强的竞争力,在同样精度的情况下,速度远超当前所有的骨干网络,最多可以有两倍性能优势。PP-LCNet的介绍可以参考[论文](https://arxiv.org/pdf/2109.15099.pdf), 或者[PP-LCNet模型介绍](docs/zh_CN/models/PP-LCNet.md),相关指标和预训练权重可以从 [这里](docs/zh_CN/ImageNet_models_cn.md)下载。 - [more](./docs/zh_CN/others/update_history.md) ## 特性 - PP-ShiTu轻量图像识别系统:集成了目标检测、特征学习、图像检索等模块,广泛适用于各类图像识别任务。 笔记本cpu上200ms即可完成在10w+库的图像识别。 详细介绍见[PP-ShiTu: A Practical Lightweight Image Recognition System](./docs/PP_ShiTu.pdf) - PP-LCNet轻量级CPU骨干网络:专门为CPU设备打造轻量级骨干网络,速度、精度均超越竞品。 详细介绍见[PP-LCNet: A Lightweight CPU Convolutional Neural Network](https://arxiv.org/pdf/2109.15099.pdf), 或者[PP-LCNet模型介绍](docs/zh_CN/models/PP-LCNet.md)。 - 丰富的预训练模型库:提供了35个系列共164个ImageNet预训练模型,其中6个精选系列模型支持结构快速修改。 - 全面易用的特征学习组件:集成arcmargin, triplet loss等12度量学习方法,通过配置文件即可随意组合切换。 - SSLD知识蒸馏:14个分类预训练模型,精度普遍提升3%以上;其中ResNet50_vd模型在ImageNet-1k数据集上的Top-1精度达到了84.0%, Res2Net200_vd预训练模型Top-1精度高达85.1%。 - 数据增广:支持AutoAugment、Cutout、Cutmix等8种数据增广算法详细介绍、代码复现和在统一实验环境下的效果评估。