# global configs Global: checkpoints: null pretrained_model: null output_dir: "./output/" device: "gpu" save_interval: 40 eval_during_train: True eval_interval: 10 epochs: 120 print_batch_step: 20 use_visualdl: False eval_mode: "retrieval" retrieval_feature_from: "features" # 'backbone' or 'features' # used for static mode and model export image_shape: [3, 256, 128] save_inference_dir: "./inference" # model architecture Arch: name: "RecModel" infer_output_key: "features" infer_add_softmax: False Backbone: name: "ResNet50_last_stage_stride1" pretrained: True stem_act: null BackboneStopLayer: name: "flatten" Neck: name: BNNeck num_features: &feat_dim 2048 weight_attr: initializer: name: Constant value: 1.0 bias_attr: initializer: name: Constant value: 0.0 learning_rate: 1.0e-20 # NOTE: Temporarily set lr small enough to freeze the bias to zero Head: name: "FC" embedding_size: *feat_dim class_num: &class_num 751 weight_attr: initializer: name: Normal std: 0.001 bias_attr: False # loss function config for traing/eval process Loss: Train: - CELoss: weight: 1.0 epsilon: 0.1 - TripletLossV2: weight: 1.0 margin: 0.3 normalize_feature: False feature_from: "backbone" - CenterLoss: weight: 0.0005 num_classes: *class_num feat_dim: *feat_dim feature_from: "backbone" Eval: - CELoss: weight: 1.0 Optimizer: - Adam: scope: RecModel lr: name: Piecewise decay_epochs: [30, 60] values: [0.00035, 0.000035, 0.0000035] warmup_epoch: 10 warmup_start_lr: 0.0000035 by_epoch: True last_epoch: 0 regularizer: name: 'L2' coeff: 0.0005 - SGD: scope: CenterLoss lr: name: Constant learning_rate: 1000.0 # NOTE: set to ori_lr*(1/centerloss_weight) to avoid manually scaling centers' gradidents. # data loader for train and eval DataLoader: Train: dataset: name: "Market1501" image_root: "./dataset/" cls_label_path: "bounding_box_train" backend: "pil" transform_ops: - ResizeImage: size: [128, 256] return_numpy: False interpolation: 'bilinear' backend: "pil" - RandFlipImage: flip_code: 1 - Pad: padding: 10 - RandCropImageV2: size: [128, 256] - ToTensor: - Normalize: mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] - RandomErasing: EPSILON: 0.5 sl: 0.02 sh: 0.4 r1: 0.3 mean: [0.485, 0.456, 0.406] sampler: name: DistributedRandomIdentitySampler batch_size: 64 num_instances: 4 drop_last: False shuffle: True loader: num_workers: 4 use_shared_memory: True Eval: Query: dataset: name: "Market1501" image_root: "./dataset/" cls_label_path: "query" backend: "pil" transform_ops: - ResizeImage: size: [128, 256] return_numpy: False interpolation: 'bilinear' backend: "pil" - ToTensor: - Normalize: mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] sampler: name: DistributedBatchSampler batch_size: 128 drop_last: False shuffle: False loader: num_workers: 4 use_shared_memory: True Gallery: dataset: name: "Market1501" image_root: "./dataset/" cls_label_path: "bounding_box_test" backend: "pil" transform_ops: - ResizeImage: size: [128, 256] return_numpy: False interpolation: 'bilinear' backend: "pil" - ToTensor: - Normalize: mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] sampler: name: DistributedBatchSampler batch_size: 128 drop_last: False shuffle: False loader: num_workers: 4 use_shared_memory: True Metric: Eval: - Recallk: topk: [1, 5] - mAP: {}