# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import paddle import paddle.fluid as fluid from paddle.fluid.param_attr import ParamAttr from paddle.fluid.layer_helper import LayerHelper from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout import math __all__ = ["SE_ResNeXt50_vd_32x4d", "SE_ResNeXt50_vd_32x4d", "SENet154_vd"] class ConvBNLayer(fluid.dygraph.Layer): def __init__( self, num_channels, num_filters, filter_size, stride=1, groups=1, is_vd_mode=False, act=None, name=None, ): super(ConvBNLayer, self).__init__() self.is_vd_mode = is_vd_mode self._pool2d_avg = Pool2D( pool_size=2, pool_stride=2, pool_padding=0, pool_type='avg') self._conv = Conv2D( num_channels=num_channels, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=groups, act=None, param_attr=ParamAttr(name=name + "_weights"), bias_attr=False) bn_name = name + '_bn' self._batch_norm = BatchNorm( num_filters, act=act, param_attr=ParamAttr(name=bn_name + '_scale'), bias_attr=ParamAttr(bn_name + '_offset'), moving_mean_name=bn_name + '_mean', moving_variance_name=bn_name + '_variance') def forward(self, inputs): if self.is_vd_mode: inputs = self._pool2d_avg(inputs) y = self._conv(inputs) y = self._batch_norm(y) return y class BottleneckBlock(fluid.dygraph.Layer): def __init__(self, num_channels, num_filters, stride, cardinality, reduction_ratio, shortcut=True, if_first=False, name=None): super(BottleneckBlock, self).__init__() self.conv0 = ConvBNLayer( num_channels=num_channels, num_filters=num_filters, filter_size=1, act='relu', name='conv' + name + '_x1') self.conv1 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters, filter_size=3, groups=cardinality, stride=stride, act='relu', name='conv' + name + '_x2') self.conv2 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters * 2 if cardinality == 32 else num_filters, filter_size=1, act=None, name='conv' + name + '_x3') self.scale = SELayer( num_channels=num_filters * 2 if cardinality == 32 else num_filters, num_filters=num_filters * 2 if cardinality == 32 else num_filters, reduction_ratio=reduction_ratio, name='fc_' + name) if not shortcut: self.short = ConvBNLayer( num_channels=num_channels, num_filters=num_filters * 2 if cardinality == 32 else num_filters, filter_size=1, stride=1, is_vd_mode=False if if_first else True, name='conv' + name + '_prj') self.shortcut = shortcut def forward(self, inputs): y = self.conv0(inputs) conv1 = self.conv1(y) conv2 = self.conv2(conv1) scale = self.scale(conv2) if self.shortcut: short = inputs else: short = self.short(inputs) y = fluid.layers.elementwise_add(x=short, y=scale) layer_helper = LayerHelper(self.full_name(), act='relu') return layer_helper.append_activation(y) class SELayer(fluid.dygraph.Layer): def __init__(self, num_channels, num_filters, reduction_ratio, name=None): super(SELayer, self).__init__() self.pool2d_gap = Pool2D(pool_type='avg', global_pooling=True) self._num_channels = num_channels med_ch = int(num_channels / reduction_ratio) stdv = 1.0 / math.sqrt(num_channels * 1.0) self.squeeze = Linear( num_channels, med_ch, act="relu", param_attr=ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name=name + "_sqz_weights"), bias_attr=ParamAttr(name=name + '_sqz_offset')) stdv = 1.0 / math.sqrt(med_ch * 1.0) self.excitation = Linear( med_ch, num_filters, act="sigmoid", param_attr=ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name=name + "_exc_weights"), bias_attr=ParamAttr(name=name + '_exc_offset')) def forward(self, input): pool = self.pool2d_gap(input) pool = fluid.layers.reshape(pool, shape=[-1, self._num_channels]) squeeze = self.squeeze(pool) excitation = self.excitation(squeeze) excitation = fluid.layers.reshape( excitation, shape=[-1, self._num_channels, 1, 1]) out = input * excitation return out class ResNeXt(fluid.dygraph.Layer): def __init__(self, layers=50, class_dim=1000, cardinality=32): super(ResNeXt, self).__init__() self.layers = layers self.cardinality = cardinality self.reduction_ratio = 16 supported_layers = [50, 101, 152] assert layers in supported_layers, \ "supported layers are {} but input layer is {}".format( supported_layers, layers) supported_cardinality = [32, 64] assert cardinality in supported_cardinality, \ "supported cardinality is {} but input cardinality is {}" \ .format(supported_cardinality, cardinality) if layers == 50: depth = [3, 4, 6, 3] elif layers == 101: depth = [3, 4, 23, 3] elif layers == 152: depth = [3, 8, 36, 3] num_channels = [128, 256, 512, 1024] num_filters = [128, 256, 512, 1024] if cardinality == 32 else [256, 512, 1024, 2048] self.conv1_1 = ConvBNLayer( num_channels=3, num_filters=64, filter_size=3, stride=2, act='relu', name="conv1_1") self.conv1_2 = ConvBNLayer( num_channels=64, num_filters=64, filter_size=3, stride=1, act='relu', name="conv1_2") self.conv1_3 = ConvBNLayer( num_channels=64, num_filters=128, filter_size=3, stride=1, act='relu', name="conv1_3") self.pool2d_max = Pool2D( pool_size=3, pool_stride=2, pool_padding=1, pool_type='max') self.block_list = [] n = 1 if layers == 50 or layers == 101 else 3 for block in range(len(depth)): n += 1 shortcut = False for i in range(depth[block]): bottleneck_block = self.add_sublayer( 'bb_%d_%d' % (block, i), BottleneckBlock( num_channels=num_channels[block] if i == 0 else num_filters[block] * int(64 // self.cardinality), num_filters=num_filters[block], stride=2 if i == 0 and block != 0 else 1, cardinality=self.cardinality, reduction_ratio=self.reduction_ratio, shortcut=shortcut, if_first=block == 0, name=str(n) + '_' + str(i + 1))) self.block_list.append(bottleneck_block) shortcut = True self.pool2d_avg = Pool2D( pool_size=7, pool_type='avg', global_pooling=True) self.pool2d_avg_channels = num_channels[-1] * 2 stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0) self.out = Linear( self.pool2d_avg_channels, class_dim, param_attr=ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name="fc6_weights"), bias_attr=ParamAttr(name="fc6_offset")) def forward(self, inputs): y = self.conv1_1(inputs) y = self.conv1_2(y) y = self.conv1_3(y) y = self.pool2d_max(y) for block in self.block_list: y = block(y) y = self.pool2d_avg(y) y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_channels]) y = self.out(y) return y def SE_ResNeXt50_vd_32x4d(**args): model = ResNeXt(layers=50, cardinality=32, **args) return model def SE_ResNeXt101_vd_32x4d(**args): model = ResNeXt(layers=101, cardinality=32, **args) return model def SENet154_vd(**args): model = ResNeXt(layers=152, cardinality=64, **args) return model