#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import paddle import paddle.fluid as fluid from paddle.fluid.initializer import MSRA from paddle.fluid.param_attr import ParamAttr __all__ = [ "HRNet", "HRNet_W18_C", "HRNet_W30_C", "HRNet_W32_C", "HRNet_W40_C", "HRNet_W44_C", "HRNet_W48_C", "HRNet_W60_C", "HRNet_W64_C", "SE_HRNet_W18_C", "SE_HRNet_W30_C", "SE_HRNet_W32_C", "SE_HRNet_W40_C", "SE_HRNet_W44_C", "SE_HRNet_W48_C", "SE_HRNet_W60_C", "SE_HRNet_W64_C" ] class HRNet(): def __init__(self, width=18, has_se=False): self.width = width self.has_se = has_se self.channels = { 18: [[18, 36], [18, 36, 72], [18, 36, 72, 144]], 30: [[30, 60], [30, 60, 120], [30, 60, 120, 240]], 32: [[32, 64], [32, 64, 128], [32, 64, 128, 256]], 40: [[40, 80], [40, 80, 160], [40, 80, 160, 320]], 44: [[44, 88], [44, 88, 176], [44, 88, 176, 352]], 48: [[48, 96], [48, 96, 192], [48, 96, 192, 384]], 60: [[60, 120], [60, 120, 240], [60, 120, 240, 480]], 64: [[64, 128], [64, 128, 256], [64, 128, 256, 512]] } def net(self, input, class_dim=1000): width = self.width channels_2, channels_3, channels_4 = self.channels[width] num_modules_2, num_modules_3, num_modules_4 = 1, 4, 3 x = self.conv_bn_layer( input=input, filter_size=3, num_filters=64, stride=2, if_act=True, name='layer1_1') x = self.conv_bn_layer( input=x, filter_size=3, num_filters=64, stride=2, if_act=True, name='layer1_2') la1 = self.layer1(x, name='layer2') tr1 = self.transition_layer([la1], [256], channels_2, name='tr1') st2 = self.stage(tr1, num_modules_2, channels_2, name='st2') tr2 = self.transition_layer(st2, channels_2, channels_3, name='tr2') st3 = self.stage(tr2, num_modules_3, channels_3, name='st3') tr3 = self.transition_layer(st3, channels_3, channels_4, name='tr3') st4 = self.stage(tr3, num_modules_4, channels_4, name='st4') #classification last_cls = self.last_cls_out(x=st4, name='cls_head') y = last_cls[0] last_num_filters = [256, 512, 1024] for i in range(3): y = fluid.layers.elementwise_add( last_cls[i + 1], self.conv_bn_layer( input=y, filter_size=3, num_filters=last_num_filters[i], stride=2, name='cls_head_add' + str(i + 1))) y = self.conv_bn_layer( input=y, filter_size=1, num_filters=2048, stride=1, name='cls_head_last_conv') pool = fluid.layers.pool2d( input=y, pool_type='avg', global_pooling=True) stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0) out = fluid.layers.fc( input=pool, size=class_dim, param_attr=ParamAttr( name='fc_weights', initializer=fluid.initializer.Uniform(-stdv, stdv)), bias_attr=ParamAttr(name='fc_offset')) return out def layer1(self, input, name=None): conv = input for i in range(4): conv = self.bottleneck_block( conv, num_filters=64, downsample=True if i == 0 else False, name=name + '_' + str(i + 1)) return conv def transition_layer(self, x, in_channels, out_channels, name=None): num_in = len(in_channels) num_out = len(out_channels) out = [] for i in range(num_out): if i < num_in: if in_channels[i] != out_channels[i]: residual = self.conv_bn_layer( x[i], filter_size=3, num_filters=out_channels[i], name=name + '_layer_' + str(i + 1)) out.append(residual) else: out.append(x[i]) else: residual = self.conv_bn_layer( x[-1], filter_size=3, num_filters=out_channels[i], stride=2, name=name + '_layer_' + str(i + 1)) out.append(residual) return out def branches(self, x, block_num, channels, name=None): out = [] for i in range(len(channels)): residual = x[i] for j in range(block_num): residual = self.basic_block( residual, channels[i], name=name + '_branch_layer_' + str(i + 1) + '_' + str(j + 1)) out.append(residual) return out def fuse_layers(self, x, channels, multi_scale_output=True, name=None): out = [] for i in range(len(channels) if multi_scale_output else 1): residual = x[i] for j in range(len(channels)): if j > i: y = self.conv_bn_layer( x[j], filter_size=1, num_filters=channels[i], if_act=False, name=name + '_layer_' + str(i + 1) + '_' + str(j + 1)) y = fluid.layers.resize_nearest(input=y, scale=2**(j - i)) residual = fluid.layers.elementwise_add( x=residual, y=y, act=None) elif j < i: y = x[j] for k in range(i - j): if k == i - j - 1: y = self.conv_bn_layer( y, filter_size=3, num_filters=channels[i], stride=2, if_act=False, name=name + '_layer_' + str(i + 1) + '_' + str(j + 1) + '_' + str(k + 1)) else: y = self.conv_bn_layer( y, filter_size=3, num_filters=channels[j], stride=2, name=name + '_layer_' + str(i + 1) + '_' + str(j + 1) + '_' + str(k + 1)) residual = fluid.layers.elementwise_add( x=residual, y=y, act=None) residual = fluid.layers.relu(residual) out.append(residual) return out def high_resolution_module(self, x, channels, multi_scale_output=True, name=None): residual = self.branches(x, 4, channels, name=name) out = self.fuse_layers( residual, channels, multi_scale_output=multi_scale_output, name=name) return out def stage(self, x, num_modules, channels, multi_scale_output=True, name=None): out = x for i in range(num_modules): if i == num_modules - 1 and multi_scale_output == False: out = self.high_resolution_module( out, channels, multi_scale_output=False, name=name + '_' + str(i + 1)) else: out = self.high_resolution_module( out, channels, name=name + '_' + str(i + 1)) return out def last_cls_out(self, x, name=None): out = [] num_filters_list = [32, 64, 128, 256] for i in range(len(x)): out.append( self.bottleneck_block( input=x[i], num_filters=num_filters_list[i], name=name + 'conv_' + str(i + 1), downsample=True)) return out def basic_block(self, input, num_filters, stride=1, downsample=False, name=None): residual = input conv = self.conv_bn_layer( input=input, filter_size=3, num_filters=num_filters, stride=stride, name=name + '_conv1') conv = self.conv_bn_layer( input=conv, filter_size=3, num_filters=num_filters, if_act=False, name=name + '_conv2') if downsample: residual = self.conv_bn_layer( input=input, filter_size=1, num_filters=num_filters, if_act=False, name=name + '_downsample') if self.has_se: conv = self.squeeze_excitation( input=conv, num_channels=num_filters, reduction_ratio=16, name=name + '_fc') return fluid.layers.elementwise_add(x=residual, y=conv, act='relu') def bottleneck_block(self, input, num_filters, stride=1, downsample=False, name=None): residual = input conv = self.conv_bn_layer( input=input, filter_size=1, num_filters=num_filters, name=name + '_conv1') conv = self.conv_bn_layer( input=conv, filter_size=3, num_filters=num_filters, stride=stride, name=name + '_conv2') conv = self.conv_bn_layer( input=conv, filter_size=1, num_filters=num_filters * 4, if_act=False, name=name + '_conv3') if downsample: residual = self.conv_bn_layer( input=input, filter_size=1, num_filters=num_filters * 4, if_act=False, name=name + '_downsample') if self.has_se: conv = self.squeeze_excitation( input=conv, num_channels=num_filters * 4, reduction_ratio=16, name=name + '_fc') return fluid.layers.elementwise_add(x=residual, y=conv, act='relu') def squeeze_excitation(self, input, num_channels, reduction_ratio, name=None): pool = fluid.layers.pool2d( input=input, pool_size=0, pool_type='avg', global_pooling=True) stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0) squeeze = fluid.layers.fc( input=pool, size=num_channels / reduction_ratio, act='relu', param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name=name + '_sqz_weights'), bias_attr=ParamAttr(name=name + '_sqz_offset')) stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0) excitation = fluid.layers.fc( input=squeeze, size=num_channels, act='sigmoid', param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name=name + '_exc_weights'), bias_attr=ParamAttr(name=name + '_exc_offset')) scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0) return scale def conv_bn_layer(self, input, filter_size, num_filters, stride=1, padding=1, num_groups=1, if_act=True, name=None): conv = fluid.layers.conv2d( input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=num_groups, act=None, param_attr=ParamAttr( initializer=MSRA(), name=name + '_weights'), bias_attr=False) bn_name = name + '_bn' bn = fluid.layers.batch_norm( input=conv, param_attr=ParamAttr( name=bn_name + "_scale", initializer=fluid.initializer.Constant(1.0)), bias_attr=ParamAttr( name=bn_name + "_offset", initializer=fluid.initializer.Constant(0.0)), moving_mean_name=bn_name + '_mean', moving_variance_name=bn_name + '_variance') if if_act: bn = fluid.layers.relu(bn) return bn def HRNet_W18_C(): model = HRNet(width=18) return model def HRNet_W30_C(): model = HRNet(width=30) return model def HRNet_W32_C(): model = HRNet(width=32) return model def HRNet_W40_C(): model = HRNet(width=40) return model def HRNet_W44_C(): model = HRNet(width=44) return model def HRNet_W48_C(): model = HRNet(width=48) return model def HRNet_W60_C(): model = HRNet(width=60) return model def HRNet_W64_C(): model = HRNet(width=64) return model def SE_HRNet_W18_C(): model = HRNet(width=18, has_se=True) return model def SE_HRNet_W30_C(): model = HRNet(width=30, has_se=True) return model def SE_HRNet_W32_C(): model = HRNet(width=32, has_se=True) return model def SE_HRNet_W40_C(): model = HRNet(width=40, has_se=True) return model def SE_HRNet_W44_C(): model = HRNet(width=44, has_se=True) return model def SE_HRNet_W48_C(): model = HRNet(width=48, has_se=True) return model def SE_HRNet_W60_C(): model = HRNet(width=60, has_se=True) return model def SE_HRNet_W64_C(): model = HRNet(width=64, has_se=True) return model