# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import utils import numpy as np import logging import time from paddle.fluid.core import AnalysisConfig from paddle.fluid.core import create_paddle_predictor logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def parse_args(): def str2bool(v): return v.lower() in ("true", "t", "1") parser = argparse.ArgumentParser() parser.add_argument("-i", "--image_file", type=str) parser.add_argument("-d", "--image_dir", type=str) parser.add_argument("-m", "--model_file", type=str) parser.add_argument("-p", "--params_file", type=str) parser.add_argument("-b", "--batch_size", type=int, default=1) parser.add_argument("--use_fp16", type=str2bool, default=False) parser.add_argument("--use_gpu", type=str2bool, default=True) parser.add_argument("--ir_optim", type=str2bool, default=True) parser.add_argument("--use_tensorrt", type=str2bool, default=False) parser.add_argument("--gpu_mem", type=int, default=8000) parser.add_argument("--enable_benchmark", type=str2bool, default=False) parser.add_argument("--model_name", type=str) return parser.parse_args() def create_predictor(args): config = AnalysisConfig(args.model_file, args.params_file) if args.use_gpu: config.enable_use_gpu(args.gpu_mem, 0) else: config.disable_gpu() config.disable_glog_info() config.switch_ir_optim(args.ir_optim) # default true if args.use_tensorrt: config.enable_tensorrt_engine( precision_mode=AnalysisConfig.Precision.Half if args.use_fp16 else AnalysisConfig.Precision.Float32, max_batch_size=args.batch_size) config.enable_memory_optim() # use zero copy config.switch_use_feed_fetch_ops(False) predictor = create_paddle_predictor(config) return predictor def create_operators(): size = 224 img_mean = [0.485, 0.456, 0.406] img_std = [0.229, 0.224, 0.225] img_scale = 1.0 / 255.0 decode_op = utils.DecodeImage() resize_op = utils.ResizeImage(resize_short=256) crop_op = utils.CropImage(size=(size, size)) normalize_op = utils.NormalizeImage( scale=img_scale, mean=img_mean, std=img_std) totensor_op = utils.ToTensor() return [decode_op, resize_op, crop_op, normalize_op, totensor_op] def preprocess(fname, ops): data = open(fname, 'rb').read() for op in ops: data = op(data) return data def main(): import os args = parse_args() if not args.enable_benchmark: assert args.batch_size == 1 assert args.use_fp16 is False else: assert args.use_gpu is True assert args.model_name is not None assert args.use_tensorrt is True assert args.image_file is not None # HALF precission predict only work when using tensorrt if args.use_fp16 is True: assert args.use_tensorrt is True operators = create_operators() predictor = create_predictor(args) input_names = predictor.get_input_names() input_tensor = predictor.get_input_tensor(input_names[0]) output_names = predictor.get_output_names() output_tensor = predictor.get_output_tensor(output_names[0]) test_num = 500 test_time = 0.0 if not args.enable_benchmark: image_files = [] if args.image_file is not None: image_files = [args.image_file] elif args.image_dir is not None: supported_exts = ('.jpg', 'jpeg', '.png', '.gif', '.bmp') for root, _, files in os.walk(args.image_dir, topdown=False): image_files += [os.path.join(root, f) for f in files if os.path.splitext(f)[-1].lower() in supported_exts] for image_file in image_files: inputs = preprocess(image_file, operators) inputs = np.expand_dims( inputs, axis=0).repeat( args.batch_size, axis=0).copy() input_tensor.copy_from_cpu(inputs) predictor.zero_copy_run() output = output_tensor.copy_to_cpu() output = output.flatten() cls = np.argmax(output) score = output[cls] logger.info("image file: {0}".format(image_file)) logger.info("class: {0}".format(cls)) logger.info("score: {0}".format(score)) else: for i in range(0, test_num + 10): inputs = np.random.rand(args.batch_size, 3, 224, 224).astype(np.float32) start_time = time.time() input_tensor.copy_from_cpu(inputs) predictor.zero_copy_run() output = output_tensor.copy_to_cpu() output = output.flatten() if i >= 10: test_time += time.time() - start_time fp_message = "FP16" if args.use_fp16 else "FP32" logger.info("{0}\t{1}\tbatch size: {2}\ttime(ms): {3}".format( args.model_name, fp_message, args.batch_size, 1000 * test_time / test_num)) if __name__ == "__main__": main()