# global configs Global: checkpoints: null pretrained_model: null output_dir: ./output/r34_r18_mgd device: gpu save_interval: 1 eval_during_train: True eval_interval: 1 epochs: 100 print_batch_step: 10 use_visualdl: False # used for static mode and model export image_shape: [3, 224, 224] save_inference_dir: ./inference to_static: False # model architecture Arch: name: "DistillationModel" class_num: &class_num 1000 # if not null, its lengths should be same as models pretrained_list: # if not null, its lengths should be same as models freeze_params_list: - True - False infer_model_name: "Student" models: - Teacher: name: ResNet34 class_num: *class_num pretrained: True return_patterns: &t_stages ["blocks[2]", "blocks[6]", "blocks[12]", "blocks[15]"] - Student: name: ResNet18 class_num: *class_num pretrained: False return_patterns: &s_stages ["blocks[1]", "blocks[3]", "blocks[5]", "blocks[7]"] # loss function config for traing/eval process Loss: Train: - DistillationGTCELoss: weight: 1.0 model_names: ["Student"] - DistillationPairLoss: weight: 1.0 base_loss_name: MGDLoss model_name_pairs: [["Student", "Teacher"]] s_keys: ["blocks[7]"] t_keys: ["blocks[15]"] name: "loss_mgd" student_channels: 512 teacher_channels: 512 Eval: - CELoss: weight: 1.0 Optimizer: name: Momentum momentum: 0.9 weight_decay: 1e-4 lr: name: Piecewise learning_rate: 0.1 decay_epochs: [30, 60, 90] values: [0.1, 0.01, 0.001, 0.0001] # data loader for train and eval DataLoader: Train: dataset: name: ImageNetDataset image_root: ./dataset/ILSVRC2012/ cls_label_path: ./dataset/ILSVRC2012/train_list.txt transform_ops: - DecodeImage: to_rgb: True channel_first: False - RandCropImage: size: 224 - RandFlipImage: flip_code: 1 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' sampler: name: DistributedBatchSampler batch_size: 64 drop_last: False shuffle: True loader: num_workers: 8 use_shared_memory: True Eval: dataset: name: ImageNetDataset image_root: ./dataset/ILSVRC2012/ cls_label_path: ./dataset/ILSVRC2012/val_list.txt transform_ops: - DecodeImage: to_rgb: True channel_first: False - ResizeImage: resize_short: 256 - CropImage: size: 224 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' sampler: name: DistributedBatchSampler batch_size: 256 drop_last: False shuffle: False loader: num_workers: 8 use_shared_memory: True Infer: infer_imgs: docs/images/inference_deployment/whl_demo.jpg batch_size: 10 transforms: - DecodeImage: to_rgb: True channel_first: False - ResizeImage: resize_short: 256 - CropImage: size: 224 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - ToCHWImage: PostProcess: name: Topk topk: 5 class_id_map_file: ppcls/utils/imagenet1k_label_list.txt Metric: Train: - DistillationTopkAcc: model_key: "Student" topk: [1, 5] Eval: - DistillationTopkAcc: model_key: "Student" topk: [1, 5]