# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import itertools from collections import defaultdict import numpy as np from paddle.io import Sampler, BatchSampler class DomainShuffleSampler(Sampler): """ Domain shuffle sampler Code was heavily based on https://github.com/bismex/MetaBIN reference: https://arxiv.org/abs/2011.14670v2 """ def __init__(self, dataset, batch_size, num_instances, camera_to_domain=True): self.dataset = dataset self.batch_size = batch_size self.num_instances = num_instances self.num_pids_per_batch = batch_size // self.num_instances self.index_pid = defaultdict(list) self.pid_domain = defaultdict(list) self.pid_index = defaultdict(list) # data_source: [(img_path, pid, camera, domain), ...] (camera_to_domain = True) if camera_to_domain: data_source = zip(dataset.images, dataset.labels, dataset.cameras, dataset.cameras) else: data_source = zip(dataset.images, dataset.labels, dataset.cameras, dataset.domains) for index, info in enumerate(data_source): domainid = info[3] if camera_to_domain: pid = 'p' + str(info[1]) + '_d' + str(domainid) else: pid = 'p' + str(info[1]) self.index_pid[index] = pid self.pid_domain[pid] = domainid self.pid_index[pid].append(index) self.pids = list(self.pid_index.keys()) self.domains = list(self.pid_domain.values()) self.num_identities = len(self.pids) self.num_domains = len(set(self.domains)) self.batch_size //= self.num_domains self.num_pids_per_batch //= self.num_domains val_pid_index = [len(x) for x in self.pid_index.values()] val_pid_index_upper = [] for x in val_pid_index: v_remain = x % self.num_instances if v_remain == 0: val_pid_index_upper.append(x) else: val_pid_index_upper.append(x - v_remain + self.num_instances) cnt_domains = [0 for x in range(self.num_domains)] for val, index in zip(val_pid_index_upper, self.domains): cnt_domains[index] += val self.max_cnt_domains = max(cnt_domains) self.total_images = self.num_domains * ( self.max_cnt_domains - (self.max_cnt_domains % self.batch_size) - self.batch_size) def _get_epoch_indices(self): def _get_batch_idxs(pids, pid_index, num_instances): batch_idxs_dict = defaultdict(list) for pid in pids: idxs = copy.deepcopy(pid_index[pid]) if len( idxs ) < self.num_instances: # if idxs is smaller than num_instance, choice redundantly idxs = np.random.choice( idxs, size=self.num_instances, replace=True) elif (len(idxs) % self.num_instances) != 0: idxs.extend( np.random.choice( idxs, size=self.num_instances - len(idxs) % self.num_instances, replace=False)) np.random.shuffle(idxs) batch_idxs = [] for idx in idxs: batch_idxs.append(int(idx)) if len(batch_idxs) == num_instances: batch_idxs_dict[pid].append(batch_idxs) batch_idxs = [] return batch_idxs_dict batch_idxs_dict = _get_batch_idxs(self.pids, self.pid_index, self.num_instances) # batch_idxs_dict: dictionary, len(batch_idxs_dict) is len(pidx), each pidx, num_instance x k samples avai_pids = copy.deepcopy(self.pids) local_avai_pids = \ [[pids for pids, idx in zip(avai_pids, self.domains) if idx == i] for i in list(set(self.domains))] local_avai_pids_save = copy.deepcopy(local_avai_pids) revive_idx = [False for i in range(self.num_domains)] final_idxs = [] while len(avai_pids) >= self.num_pids_per_batch and not all( revive_idx): for i in range(self.num_domains): selected_pids = np.random.choice( local_avai_pids[i], self.num_pids_per_batch, replace=False) for pid in selected_pids: batch_idxs = batch_idxs_dict[pid].pop(0) final_idxs.extend(batch_idxs) if len(batch_idxs_dict[pid]) == 0: avai_pids.remove(pid) local_avai_pids[i].remove(pid) for i in range(self.num_domains): if len(local_avai_pids[i]) < self.num_pids_per_batch: batch_idxs_dict_new = _get_batch_idxs( self.pids, self.pid_index, self.num_instances) revive_idx[i] = True cnt = 0 for pid, val in batch_idxs_dict_new.items(): if self.domains[cnt] == i: batch_idxs_dict[pid] = copy.deepcopy( batch_idxs_dict_new[pid]) cnt += 1 local_avai_pids[i] = copy.deepcopy(local_avai_pids_save[i]) avai_pids.extend(local_avai_pids_save[i]) avai_pids = list(set(avai_pids)) return final_idxs def __iter__(self): yield from itertools.islice(self._infinite_indices(), 0, None, 1) def _infinite_indices(self): while True: indices = self._get_epoch_indices() yield from indices class DomainShuffleBatchSampler(BatchSampler): def __init__(self, dataset, batch_size, num_instances, camera_to_domain, drop_last): sampler = DomainShuffleSampler( dataset=dataset, batch_size=batch_size, num_instances=num_instances, camera_to_domain=camera_to_domain) super().__init__( sampler=sampler, batch_size=batch_size, drop_last=drop_last) class NaiveIdentitySampler(Sampler): """ Randomly sample N identities, then for each identity, randomly sample K instances, therefore batch size is N*K. Args: - data_source (list): list of (img_path, pid, camid). - num_instances (int): number of instances per identity in a batch. - batch_size (int): number of examples in a batch. Code was heavily based on https://github.com/bismex/MetaBIN reference: https://arxiv.org/abs/2011.14670v2 """ def __init__(self, dataset, batch_size, num_instances): self.dataset = dataset self.batch_size = batch_size self.num_instances = num_instances self.num_pids_per_batch = batch_size // self.num_instances self.index_pid = defaultdict(list) self.pid_cam = defaultdict(list) self.pid_index = defaultdict(list) # data_source: [(img_path, pid, camera, domain), ...] (camera_to_domain = True) data_source = zip(dataset.images, dataset.labels, dataset.cameras, dataset.cameras) for index, info in enumerate(data_source): pid = info[1] camid = info[2] self.index_pid[index] = pid self.pid_cam[pid].append(camid) self.pid_index[pid].append(index) self.pids = list(self.pid_index.keys()) self.num_identities = len(self.pids) val_pid_index = [len(x) for x in self.pid_index.values()] val_pid_index_upper = [] for x in val_pid_index: v_remain = x % self.num_instances if v_remain == 0: val_pid_index_upper.append(x) else: val_pid_index_upper.append(x - v_remain + self.num_instances) total_images = sum(val_pid_index_upper) total_images = total_images - (total_images % self.batch_size ) - self.batch_size # approax self.total_images = total_images def _get_epoch_indices(self): batch_idxs_dict = defaultdict(list) for pid in self.pids: idxs = copy.deepcopy( self.pid_index[pid]) # whole index for each ID if len( idxs ) < self.num_instances: # if idxs is smaller than num_instance, choice redundantly idxs = np.random.choice( idxs, size=self.num_instances, replace=True) elif (len(idxs) % self.num_instances) != 0: idxs.extend( np.random.choice( idxs, size=self.num_instances - len(idxs) % self.num_instances, replace=False)) np.random.shuffle(idxs) batch_idxs = [] for idx in idxs: batch_idxs.append(int(idx)) if len(batch_idxs) == self.num_instances: batch_idxs_dict[pid].append(batch_idxs) batch_idxs = [] # batch_idxs_dict: dictionary, len(batch_idxs_dict) is len(pidx), each pidx, num_instance x k samples avai_pids = copy.deepcopy(self.pids) final_idxs = [] while len(avai_pids) >= self.num_pids_per_batch: selected_pids = np.random.choice( avai_pids, self.num_pids_per_batch, replace=False) for pid in selected_pids: batch_idxs = batch_idxs_dict[pid].pop(0) final_idxs.extend(batch_idxs) if len(batch_idxs_dict[pid]) == 0: avai_pids.remove(pid) return final_idxs def __iter__(self): yield from itertools.islice(self._infinite_indices(), 0, None, 1) def _infinite_indices(self): while True: indices = self._get_epoch_indices() yield from indices def __len__(self): return self.total_images class NaiveIdentityBatchSampler(BatchSampler): def __init__(self, dataset, batch_size, num_instances, drop_last): sampler = NaiveIdentitySampler( dataset=dataset, batch_size=batch_size, num_instances=num_instances) super().__init__( sampler=sampler, batch_size=batch_size, drop_last=drop_last)