# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from paddle_serving_client import Client #app from paddle_serving_app.reader import Sequential, URL2Image, Resize from paddle_serving_app.reader import CenterCrop, RGB2BGR, Transpose, Div, Normalize import time client = Client() client.load_client_config("./ResNet50_vd_serving/serving_server_conf.prototxt") client.connect(["127.0.0.1:9292"]) label_dict = {} label_idx = 0 with open("imagenet.label") as fin: for line in fin: label_dict[label_idx] = line.strip() label_idx += 1 #preprocess seq = Sequential([ URL2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)), Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True) ]) start = time.time() image_file = "https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg" for i in range(1): img = seq(image_file) fetch_map = client.predict( feed={"inputs": img}, fetch=["prediction"], batch=False) prob = max(fetch_map["prediction"][0]) label = label_dict[fetch_map["prediction"][0].tolist().index(prob)].strip( ).replace(",", "") print("prediction: {}, probability: {}".format(label, prob)) end = time.time() print(end - start)