# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import paddle from typing import Dict, List from ppcls.utils import logger from . import optimizer __all__ = ['build_optimizer'] def build_lr_scheduler(lr_config, epochs, step_each_epoch): from . import learning_rate lr_config.update({'epochs': epochs, 'step_each_epoch': step_each_epoch}) if 'name' in lr_config: lr_name = lr_config.pop('name') lr = getattr(learning_rate, lr_name)(**lr_config) if isinstance(lr, paddle.optimizer.lr.LRScheduler): return lr else: return lr() else: lr = lr_config['learning_rate'] return lr # model_list is None in static graph def build_optimizer(config, epochs, step_each_epoch, model_list=None): optim_config = copy.deepcopy(config) if isinstance(optim_config, dict): # convert {'name': xxx, **optim_cfg} to [{name: {scope: xxx, **optim_cfg}}] optim_name = optim_config.pop("name") optim_config: List[Dict[str, Dict]] = [{ optim_name: { 'scope': "all", ** optim_config } }] optim_list = [] lr_list = [] """NOTE: Currently only support optim objets below. 1. single optimizer config. 2. next level uner Arch, such as Arch.backbone, Arch.neck, Arch.head. 3. loss which has parameters, such as CenterLoss. """ for optim_item in optim_config: # optim_cfg = {optim_name: {scope: xxx, **optim_cfg}} # step1 build lr optim_name = list(optim_item.keys())[0] # get optim_name optim_scope = optim_item[optim_name].pop('scope') # get optim_scope optim_cfg = optim_item[optim_name] # get optim_cfg lr = build_lr_scheduler(optim_cfg.pop('lr'), epochs, step_each_epoch) logger.info("build lr ({}) for scope ({}) success..".format( lr, optim_scope)) # step2 build regularization if 'regularizer' in optim_cfg and optim_cfg['regularizer'] is not None: if 'weight_decay' in optim_cfg: logger.warning( "ConfigError: Only one of regularizer and weight_decay can be set in Optimizer Config. \"weight_decay\" has been ignored." ) reg_config = optim_cfg.pop('regularizer') reg_name = reg_config.pop('name') + 'Decay' reg = getattr(paddle.regularizer, reg_name)(**reg_config) optim_cfg["weight_decay"] = reg logger.info("build regularizer ({}) for scope ({}) success..". format(reg, optim_scope)) # step3 build optimizer if 'clip_norm' in optim_cfg: clip_norm = optim_cfg.pop('clip_norm') grad_clip = paddle.nn.ClipGradByNorm(clip_norm=clip_norm) else: grad_clip = None optim_model = [] # for static graph if model_list is None: optim = getattr(optimizer, optim_name)( learning_rate=lr, grad_clip=grad_clip, **optim_cfg)(model_list=optim_model) return optim, lr # for dynamic graph for i in range(len(model_list)): if len(model_list[i].parameters()) == 0: continue if optim_scope == "all": # optimizer for all optim_model.append(model_list[i]) else: if optim_scope.endswith("Loss"): # optimizer for loss for m in model_list[i].sublayers(True): if m.__class__.__name__ == optim_scope: optim_model.append(m) else: # opmizer for module in model, such as backbone, neck, head... if optim_scope == model_list[i].__class__.__name__: optim_model.append(model_list[i]) elif hasattr(model_list[i], optim_scope): optim_model.append(getattr(model_list[i], optim_scope)) optim = getattr(optimizer, optim_name)( learning_rate=lr, grad_clip=grad_clip, **optim_cfg)(model_list=optim_model) logger.info("build optimizer ({}) for scope ({}) success..".format( optim, optim_scope)) optim_list.append(optim) lr_list.append(lr) return optim_list, lr_list