import os import paddle import cv2 from ppcls.arch import build_model from ppcls.arch.gears.identity_head import IdentityHead from ppcls.utils.config import parse_config, parse_args from ppcls.utils.save_load import load_dygraph_pretrain from ppcls.utils.logger import init_logger from ppcls.data import transform, create_operators from ppcls.arch.slim import quantize_model class GalleryLayer(paddle.nn.Layer): def __init__(self, configs): super().__init__() self.configs = configs embedding_size = self.configs["Arch"]["Head"]["embedding_size"] self.batch_size = self.configs["IndexProcess"]["batch_size"] self.image_shape = self.configs["Global"]["image_shape"].copy() self.image_shape.insert(0, self.batch_size) image_root = self.configs["IndexProcess"]["image_root"] data_file = self.configs["IndexProcess"]["data_file"] delimiter = self.configs["IndexProcess"]["delimiter"] self.gallery_images = [] gallery_docs = [] gallery_labels = [] with open(data_file, 'r', encoding='utf-8') as f: lines = f.readlines() for ori_line in lines: line = ori_line.strip().split(delimiter) text_num = len(line) assert text_num >= 2, f"line({ori_line}) must be splitted into at least 2 parts, but got {text_num}" image_file = os.path.join(image_root, line[0]) self.gallery_images.append(image_file) gallery_docs.append(ori_line.strip()) gallery_labels.append(line[1].strip()) self.gallery_layer = paddle.nn.Linear(embedding_size, len(self.gallery_images), bias_attr=False) def forward(self, x): x = paddle.nn.functional.normalize(x) x = self.gallery_layer(x) return x def build_gallery_layer(self, feature_extractor): transform_configs = self.configs["IndexProcess"]["transform_ops"] preprocess_ops = create_operators(transform_configs) embedding_size = self.configs["Arch"]["Head"]["embedding_size"] batch_index = 0 input_tensor = paddle.zeros(self.image_shape) gallery_feature = paddle.zeros((len(self.gallery_images), embedding_size)) for i, image_path in enumerate(self.gallery_images): image = cv2.imread(image_path) for op in preprocess_ops: image = op(image) input_tensor[batch_index] = image batch_index += 1 if batch_index == self.batch_size or i == len(self.gallery_images) - 1: batch_feature = feature_extractor(input_tensor)["features"] for j in range(batch_index): feature = batch_feature[j] norm_feature = paddle.nn.functional.normalize(feature, axis=0) gallery_feature[i - batch_index + j] = norm_feature self.gallery_layer.set_state_dict({"weight": gallery_feature.T}) def export_fuse_model(configs): slim_config = configs["Slim"].copy() configs["Slim"] = None fuse_model = build_model(configs) fuse_model.head = GalleryLayer(configs) configs["slim"] = slim_config quantize_model(configs, fuse_model) load_dygraph_pretrain(fuse_model, configs["Global"]["pretrained_model"]) fuse_model.eval() fuse_model.head.build_gallery_layer(fuse_model) save_path = configs["Global"]["save_inference_dir"] fuse_model.quanter.save_quantized_model( fuse_model, save_path, input_spec=[ paddle.static.InputSpec( shape=[None] + configs["Global"]["image_shape"], dtype='float32') ]) def main(): args = parse_args() configs = parse_config(args.config) init_logger(name='gallery2fc') export_fuse_model(configs) if __name__ == '__main__': main()