# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import cv2 import numpy as np def parse_args(): def str2bool(v): return v.lower() in ("true", "t", "1") # general params parser = argparse.ArgumentParser() parser.add_argument("-i", "--image_file", type=str) parser.add_argument("--use_gpu", type=str2bool, default=True) # params for preprocess parser.add_argument("--resize_short", type=int, default=256) parser.add_argument("--resize", type=int, default=224) parser.add_argument("--normalize", type=str2bool, default=True) # params for predict parser.add_argument("--model_file", type=str) parser.add_argument("--params_file", type=str) parser.add_argument("-b", "--batch_size", type=int, default=1) parser.add_argument("--use_fp16", type=str2bool, default=False) parser.add_argument("--ir_optim", type=str2bool, default=True) parser.add_argument("--use_tensorrt", type=str2bool, default=False) parser.add_argument("--gpu_mem", type=int, default=8000) parser.add_argument("--enable_benchmark", type=str2bool, default=False) parser.add_argument("--model_name", type=str) parser.add_argument("--top_k", type=int, default=1) parser.add_argument("--hubserving", type=str2bool, default=False) # params for infer parser.add_argument("--model", type=str) parser.add_argument("--pretrained_model", type=str) parser.add_argument("--class_num", type=int, default=1000) parser.add_argument( "--load_static_weights", type=str2bool, default=False, help='Whether to load the pretrained weights saved in static mode') # parameters for pre-label the images parser.add_argument( "--pre_label_image", type=str2bool, default=False, help="Whether to pre-label the images using the loaded weights") parser.add_argument("--pre_label_out_idr", type=str, default=None) return parser.parse_args() def preprocess(img, args): resize_op = ResizeImage(resize_short=args.resize_short) img = resize_op(img) crop_op = CropImage(size=(args.resize, args.resize)) img = crop_op(img) if args.normalize: img_mean = [0.485, 0.456, 0.406] img_std = [0.229, 0.224, 0.225] img_scale = 1.0 / 255.0 normalize_op = NormalizeImage( scale=img_scale, mean=img_mean, std=img_std) img = normalize_op(img) tensor_op = ToTensor() img = tensor_op(img) return img def postprocess(output, args): output = output.flatten() classes = np.argpartition(output, -args.top_k)[-args.top_k:] classes = classes[np.argsort(-output[classes])] scores = output[classes] return classes, scores class ResizeImage(object): def __init__(self, resize_short=None): self.resize_short = resize_short def __call__(self, img): img_h, img_w = img.shape[:2] percent = float(self.resize_short) / min(img_w, img_h) w = int(round(img_w * percent)) h = int(round(img_h * percent)) return cv2.resize(img, (w, h)) class CropImage(object): def __init__(self, size): if type(size) is int: self.size = (size, size) else: self.size = size def __call__(self, img): w, h = self.size img_h, img_w = img.shape[:2] w_start = (img_w - w) // 2 h_start = (img_h - h) // 2 w_end = w_start + w h_end = h_start + h return img[h_start:h_end, w_start:w_end, :] class NormalizeImage(object): def __init__(self, scale=None, mean=None, std=None): self.scale = np.float32(scale if scale is not None else 1.0 / 255.0) mean = mean if mean is not None else [0.485, 0.456, 0.406] std = std if std is not None else [0.229, 0.224, 0.225] shape = (1, 1, 3) self.mean = np.array(mean).reshape(shape).astype('float32') self.std = np.array(std).reshape(shape).astype('float32') def __call__(self, img): return (img.astype('float32') * self.scale - self.mean) / self.std class ToTensor(object): def __init__(self): pass def __call__(self, img): img = img.transpose((2, 0, 1)) return img class Base64ToCV2(object): def __init__(self): pass def __call__(self, b64str): import base64 data = base64.b64decode(b64str.encode('utf8')) data = np.fromstring(data, np.uint8) data = cv2.imdecode(data, cv2.IMREAD_COLOR)[:, :, ::-1] return data