# global configs Global: checkpoints: null pretrained_model: null output_dir: ./output/ device: gpu save_interval: 1 eval_during_train: True eval_interval: 1 epochs: 300 print_batch_step: 50 use_visualdl: False # used for static mode and model export image_shape: [3, 384, 384] save_inference_dir: ./inference # training model under @to_static to_static: False update_freq: 2 # for 8 cards # model architecture Arch: name: CvT_W24_384 class_num: 1000 # loss function config for traing/eval process Loss: Train: - CELoss: weight: 1.0 epsilon: 0.1 Eval: - CELoss: weight: 1.0 Optimizer: name: AdamW beta1: 0.9 beta2: 0.999 epsilon: 1e-8 weight_decay: 0.1 no_weight_decay_name: pos_embed cls_token .bias one_dim_param_no_weight_decay: True lr: # for 8 cards name: Cosine learning_rate: 1e-3 # lr 1e-3 for total_batch_size 1024 eta_min: 1e-5 warmup_epoch: 5 warmup_start_lr: 1e-6 by_epoch: True # data loader for train and eval DataLoader: Train: dataset: name: ImageNetDataset image_root: ./dataset/ILSVRC2012/ cls_label_path: ./dataset/ILSVRC2012/train_list.txt transform_ops: - DecodeImage: to_rgb: True channel_first: False backend: pil - RandCropImage: size: 384 interpolation: bicubic backend: pil - RandFlipImage: flip_code: 1 - TimmAutoAugment: config_str: rand-m9-mstd0.5-inc1 interpolation: bicubic img_size: 384 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - RandomErasing: EPSILON: 0.25 sl: 0.02 sh: 1.0/3.0 r1: 0.3 attempt: 10 use_log_aspect: True mode: pixel batch_transform_ops: - OpSampler: MixupOperator: alpha: 0.8 prob: 0.5 CutmixOperator: alpha: 1.0 prob: 0.5 sampler: name: DistributedBatchSampler batch_size: 16 drop_last: True shuffle: True loader: num_workers: 4 use_shared_memory: True Eval: dataset: name: ImageNetDataset image_root: ./dataset/ILSVRC2012/ cls_label_path: ./dataset/ILSVRC2012/val_list.txt transform_ops: - DecodeImage: to_rgb: True channel_first: False backend: pil - ResizeImage: size: 384 interpolation: bicubic backend: pil - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' sampler: name: DistributedBatchSampler batch_size: 32 drop_last: False shuffle: False loader: num_workers: 4 use_shared_memory: True Infer: infer_imgs: docs/images/inference_deployment/whl_demo.jpg batch_size: 10 transforms: - DecodeImage: to_rgb: True channel_first: False backend: pil - ResizeImage: size: 384 interpolation: bicubic backend: pil - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - ToCHWImage: PostProcess: name: Topk topk: 5 class_id_map_file: ppcls/utils/imagenet1k_label_list.txt Metric: Eval: - TopkAcc: topk: [1, 5]