# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. dependencies = ['paddle', 'numpy'] import paddle from ppcls.modeling.architectures import alexnet as _alexnet from ppcls.modeling.architectures import vgg as _vgg from ppcls.modeling.architectures import resnet as _resnet from ppcls.modeling.architectures import squeezenet as _squeezenet from ppcls.modeling.architectures import densenet as _densenet from ppcls.modeling.architectures import inception_v3 as _inception_v3 from ppcls.modeling.architectures import inception_v4 as _inception_v4 from ppcls.modeling.architectures import googlenet as _googlenet from ppcls.modeling.architectures import shufflenet_v2 as _shufflenet_v2 from ppcls.modeling.architectures import mobilenet_v1 as _mobilenet_v1 from ppcls.modeling.architectures import mobilenet_v2 as _mobilenet_v2 from ppcls.modeling.architectures import mobilenet_v3 as _mobilenet_v3 from ppcls.modeling.architectures import resnext as _resnext def _load_pretrained_parameters(model, name): url = 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/{}_pretrained.pdparams'.format(name) path = paddle.utils.download.get_weights_path_from_url(url) model.set_state_dict(paddle.load(path)) return model def AlexNet(pretrained=False, **kwargs): """ AlexNet Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `AlexNet` model depends on args. """ model = _alexnet.AlexNet(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'AlexNet') return model def VGG11(pretrained=False, **kwargs): """ VGG11 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False` Returns: model: nn.Layer. Specific `VGG11` model depends on args. """ model = _vgg.VGG11(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'VGG11') return model def VGG13(pretrained=False, **kwargs): """ VGG13 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False` Returns: model: nn.Layer. Specific `VGG13` model depends on args. """ model = _vgg.VGG13(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'VGG13') return model def VGG16(pretrained=False, **kwargs): """ VGG16 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False` Returns: model: nn.Layer. Specific `VGG16` model depends on args. """ model = _vgg.VGG16(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'VGG16') return model def VGG19(pretrained=False, **kwargs): """ VGG19 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False` Returns: model: nn.Layer. Specific `VGG19` model depends on args. """ model = _vgg.VGG19(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'VGG19') return model def ResNet18(pretrained=False, **kwargs): """ ResNet18 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. input_image_channel: int=3. The number of input image channels data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC') Returns: model: nn.Layer. Specific `ResNet18` model depends on args. """ model = _resnet.ResNet18(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'ResNet18') return model def ResNet34(pretrained=False, **kwargs): """ ResNet34 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. input_image_channel: int=3. The number of input image channels data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC') Returns: model: nn.Layer. Specific `ResNet34` model depends on args. """ model = _resnet.ResNet34(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'ResNet34') return model def ResNet50(pretrained=False, **kwargs): """ ResNet50 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. input_image_channel: int=3. The number of input image channels data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC') Returns: model: nn.Layer. Specific `ResNet50` model depends on args. """ model = _resnet.ResNet50(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'ResNet50') return model def ResNet101(pretrained=False, **kwargs): """ ResNet101 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. input_image_channel: int=3. The number of input image channels data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC') Returns: model: nn.Layer. Specific `ResNet101` model depends on args. """ model = _resnet.ResNet101(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'ResNet101') return model def ResNet152(pretrained=False, **kwargs): """ ResNet152 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. input_image_channel: int=3. The number of input image channels data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC') Returns: model: nn.Layer. Specific `ResNet152` model depends on args. """ model = _resnet.ResNet152(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'ResNet152') return model def SqueezeNet1_0(pretrained=False, **kwargs): """ SqueezeNet1_0 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `SqueezeNet1_0` model depends on args. """ model = _squeezenet.SqueezeNet1_0(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'SqueezeNet1_0') return model def SqueezeNet1_1(pretrained=False, **kwargs): """ SqueezeNet1_1 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `SqueezeNet1_1` model depends on args. """ model = _squeezenet.SqueezeNet1_1(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'SqueezeNet1_1') return model def DenseNet121(pretrained=False, **kwargs): """ DenseNet121 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. dropout: float=0. Probability of setting units to zero. bn_size: int=4. The number of channals per group Returns: model: nn.Layer. Specific `DenseNet121` model depends on args. """ model = _densenet.DenseNet121(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'DenseNet121') return model def DenseNet161(pretrained=False, **kwargs): """ DenseNet161 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. dropout: float=0. Probability of setting units to zero. bn_size: int=4. The number of channals per group Returns: model: nn.Layer. Specific `DenseNet161` model depends on args. """ model = _densenet.DenseNet161(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'DenseNet161') return model def DenseNet169(pretrained=False, **kwargs): """ DenseNet169 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. dropout: float=0. Probability of setting units to zero. bn_size: int=4. The number of channals per group Returns: model: nn.Layer. Specific `DenseNet169` model depends on args. """ model = _densenet.DenseNet169(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'DenseNet169') return model def DenseNet201(pretrained=False, **kwargs): """ DenseNet201 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. dropout: float=0. Probability of setting units to zero. bn_size: int=4. The number of channals per group Returns: model: nn.Layer. Specific `DenseNet201` model depends on args. """ model = _densenet.DenseNet201(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'DenseNet201') return model def DenseNet264(pretrained=False, **kwargs): """ DenseNet264 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. dropout: float=0. Probability of setting units to zero. bn_size: int=4. The number of channals per group Returns: model: nn.Layer. Specific `DenseNet264` model depends on args. """ model = _densenet.DenseNet264(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'DenseNet264') return model def InceptionV3(pretrained=False, **kwargs): """ InceptionV3 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `InceptionV3` model depends on args. """ model = _inception_v3.InceptionV3(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'InceptionV3') return model def InceptionV4(pretrained=False, **kwargs): """ InceptionV4 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `InceptionV4` model depends on args. """ model = _inception_v4.InceptionV4(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'InceptionV4') return model def GoogLeNet(pretrained=False, **kwargs): """ GoogLeNet Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `GoogLeNet` model depends on args. """ model = _googlenet.GoogLeNet(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'GoogLeNet') return model def ShuffleNet(pretrained=False, **kwargs): """ ShuffleNet Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `ShuffleNet` model depends on args. """ model = _shufflenet_v2.ShuffleNet(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'ShuffleNet') return model def MobileNetV1(pretrained=False, **kwargs): """ MobileNetV1 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `MobileNetV1` model depends on args. """ model = _mobilenet_v1.MobileNetV1(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'MobileNetV1') return model def MobileNetV1_x0_25(pretrained=False, **kwargs): """ MobileNetV1_x0_25 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `MobileNetV1_x0_25` model depends on args. """ model = _mobilenet_v1.MobileNetV1_x0_25(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'MobileNetV1_x0_25') return model def MobileNetV1_x0_5(pretrained=False, **kwargs): """ MobileNetV1_x0_5 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `MobileNetV1_x0_5` model depends on args. """ model = _mobilenet_v1.MobileNetV1_x0_5(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'MobileNetV1_x0_5') return model def MobileNetV1_x0_75(pretrained=False, **kwargs): """ MobileNetV1_x0_75 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `MobileNetV1_x0_75` model depends on args. """ model = _mobilenet_v1.MobileNetV1_x0_75(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'MobileNetV1_x0_75') return model def MobileNetV2_x0_25(pretrained=False, **kwargs): """ MobileNetV2_x0_25 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `MobileNetV2_x0_25` model depends on args. """ model = _mobilenet_v2.MobileNetV2_x0_25(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'MobileNetV2_x0_25') return model def MobileNetV2_x0_5(pretrained=False, **kwargs): """ MobileNetV2_x0_5 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `MobileNetV2_x0_5` model depends on args. """ model = _mobilenet_v2.MobileNetV2_x0_5(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'MobileNetV2_x0_5') return model def MobileNetV2_x0_75(pretrained=False, **kwargs): """ MobileNetV2_x0_75 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `MobileNetV2_x0_75` model depends on args. """ model = _mobilenet_v2.MobileNetV2_x0_75(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'MobileNetV2_x0_75') return model def MobileNetV2_x1_5(pretrained=False, **kwargs): """ MobileNetV2_x1_5 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `MobileNetV2_x1_5` model depends on args. """ model = _mobilenet_v2.MobileNetV2_x1_5(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'MobileNetV2_x1_5') return model def MobileNetV2_x2_0(pretrained=False, **kwargs): """ MobileNetV2_x2_0 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `MobileNetV2_x2_0` model depends on args. """ model = _mobilenet_v2.MobileNetV2_x2_0(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'MobileNetV2_x2_0') return model def MobileNetV3_large_x0_35(pretrained=False, **kwargs): """ MobileNetV3_large_x0_35 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `MobileNetV3_large_x0_35` model depends on args. """ model = _mobilenet_v3.MobileNetV3_large_x0_35(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'MobileNetV3_large_x0_35') return model def MobileNetV3_large_x0_5(pretrained=False, **kwargs): """ MobileNetV3_large_x0_5 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `MobileNetV3_large_x0_5` model depends on args. """ model = _mobilenet_v3.MobileNetV3_large_x0_5(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'MobileNetV3_large_x0_5') return model def MobileNetV3_large_x0_75(pretrained=False, **kwargs): """ MobileNetV3_large_x0_75 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `MobileNetV3_large_x0_75` model depends on args. """ model = _mobilenet_v3.MobileNetV3_large_x0_75(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'MobileNetV3_large_x0_75') return model def MobileNetV3_large_x1_0(pretrained=False, **kwargs): """ MobileNetV3_large_x1_0 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `MobileNetV3_large_x1_0` model depends on args. """ model = _mobilenet_v3.MobileNetV3_large_x1_0(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'MobileNetV3_large_x1_0') return model def MobileNetV3_large_x1_25(pretrained=False, **kwargs): """ MobileNetV3_large_x1_25 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `MobileNetV3_large_x1_25` model depends on args. """ model = _mobilenet_v3.MobileNetV3_large_x1_25(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'MobileNetV3_large_x1_25') return model def MobileNetV3_small_x0_35(pretrained=False, **kwargs): """ MobileNetV3_small_x0_35 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `MobileNetV3_small_x0_35` model depends on args. """ model = _mobilenet_v3.MobileNetV3_small_x0_35(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'MobileNetV3_small_x0_35') return model def MobileNetV3_small_x0_5(pretrained=False, **kwargs): """ MobileNetV3_small_x0_5 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `MobileNetV3_small_x0_5` model depends on args. """ model = _mobilenet_v3.MobileNetV3_small_x0_5(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'MobileNetV3_small_x0_5') return model def MobileNetV3_small_x0_75(pretrained=False, **kwargs): """ MobileNetV3_small_x0_75 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `MobileNetV3_small_x0_75` model depends on args. """ model = _mobilenet_v3.MobileNetV3_small_x0_75(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'MobileNetV3_small_x0_75') return model def MobileNetV3_small_x1_0(pretrained=False, **kwargs): """ MobileNetV3_small_x1_0 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `MobileNetV3_small_x1_0` model depends on args. """ model = _mobilenet_v3.MobileNetV3_small_x1_0(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'MobileNetV3_small_x1_0') return model def MobileNetV3_small_x1_25(pretrained=False, **kwargs): """ MobileNetV3_small_x1_25 Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `MobileNetV3_small_x1_25` model depends on args. """ model = _mobilenet_v3.MobileNetV3_small_x1_25(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'MobileNetV3_small_x1_25') return model def ResNeXt101_32x4d(pretrained=False, **kwargs): """ ResNeXt101_32x4d Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `ResNeXt101_32x4d` model depends on args. """ model = _resnext.ResNeXt101_32x4d(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'ResNeXt101_32x4d') return model def ResNeXt101_64x4d(pretrained=False, **kwargs): """ ResNeXt101_64x4d Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `ResNeXt101_64x4d` model depends on args. """ model = _resnext.ResNeXt101_64x4d(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'ResNeXt101_64x4d') return model def ResNeXt152_32x4d(pretrained=False, **kwargs): """ ResNeXt152_32x4d Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `ResNeXt152_32x4d` model depends on args. """ model = _resnext.ResNeXt152_32x4d(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'ResNeXt152_32x4d') return model def ResNeXt152_64x4d(pretrained=False, **kwargs): """ ResNeXt152_64x4d Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `ResNeXt152_64x4d` model depends on args. """ model = _resnext.ResNeXt152_64x4d(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'ResNeXt152_64x4d') return model def ResNeXt50_32x4d(pretrained=False, **kwargs): """ ResNeXt50_32x4d Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `ResNeXt50_32x4d` model depends on args. """ model = _resnext.ResNeXt50_32x4d(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'ResNeXt50_32x4d') return model def ResNeXt50_64x4d(pretrained=False, **kwargs): """ ResNeXt50_64x4d Args: pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. kwargs: class_dim: int=1000. Output dim of last fc layer. Returns: model: nn.Layer. Specific `ResNeXt50_64x4d` model depends on args. """ model = _resnext.ResNeXt50_64x4d(**kwargs) if pretrained: model = _load_pretrained_parameters(model, 'ResNeXt50_64x4d') return model