# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.abspath(os.path.join(__dir__, '../'))) import copy import cv2 import numpy as np from python.predict_rec import RecPredictor from python.predict_det import DetPredictor from vector_search import Graph_Index from utils import logger from utils import config from utils.get_image_list import get_image_list def split_datafile(data_file, image_root): gallery_images = [] gallery_docs = [] with open(datafile) as f: lines = f.readlines() for i, line in enumerate(lines): line = line.strip().split("\t") if line[0] == 'image_id': continue image_file = os.path.join(image_root, line[3]) image_doc = line[1] gallery_images.append(image_file) gallery_docs.append(image_doc) return gallery_images, gallery_docs class SystemPredictor(object): def __init__(self, config): self.config = config self.rec_predictor = RecPredictor(config) self.det_predictor = DetPredictor(config) assert 'IndexProcess' in config.keys(), "Index config not found ... " self.indexer(config['IndexProcess']) self.return_k = self.config['IndexProcess']['infer']['return_k'] self.search_budget = self.config['IndexProcess']['infer']['search_budget'] def indexer(self, config): if 'build' in config.keys() and config['build']['enable']: # build the index from scratch with open(config['build']['datafile']) as f: lines = f.readlines() gallery_images, gallery_docs = split_datafile(config['build']['data_file'], config['build']['image_root']) # extract gallery features gallery_features = np.zeros([len(gallery_images), config['build']['embedding_size']], dtype=np.float32) for i, image_file in enumerate(gallery_images): img = cv2.imread(image_file)[:, :, ::-1] rec_feat = self.rec_predictor.predict(img) gallery_features[i,:] = rec_feat # train index self.Searcher = Graph_Index(dist_type=config['build']['dist_type']) self.Searcher.build(gallery_vectors=gallery_features, gallery_docs=gallery_docs, pq_size=config['build']['pq_size'], index_path=config['build']['index_path']) else: # load local index self.Searcher = Graph_Index(dist_type=config['build']['dist_type']) self.Searcher.load(config['infer']['index_path']) def predict(self, img): output = [] results = self.det_predictor.predict(img) for result in results: xmin, ymin, xmax, ymax = result["bbox"].astype("int") crop_img = img[xmin:xmax, ymin:ymax, :].copy() rec_results = self.rec_predictor.predict(crop_img) result["featrue"] = rec_results scores, docs = self.Searcher.search(query=rec_results, return_k=self.return_k, search_budget=self.search_budget) result["ret_docs"] = docs result["ret_scores"] = scores output.append(result) return output def main(config): system_predictor = SystemPredictor(config) image_list = get_image_list(config["Global"]["infer_imgs"]) assert config["Global"]["batch_size"] == 1 for idx, image_file in enumerate(image_list): img = cv2.imread(image_file)[:, :, ::-1] output = system_predictor.predict(img) #print(output) return if __name__ == "__main__": args = config.parse_args() config = config.get_config(args.config, overrides=args.override, show=True) main(config)