# 其他模型 ## 概述 正在持续更新中...... ## 精度、FLOPS和参数量 | Models | Top1 | Top5 | Reference
top1 | Reference
top5 | FLOPS
(G) | Parameters
(M) | |:--:|:--:|:--:|:--:|:--:|:--:|:--:| | AlexNet | 0.567 | 0.792 | 0.5720 | | 1.370 | 61.090 | | SqueezeNet1_0 | 0.596 | 0.817 | 0.575 | | 1.550 | 1.240 | | SqueezeNet1_1 | 0.601 | 0.819 | | | 0.690 | 1.230 | | VGG11 | 0.693 | 0.891 | | | 15.090 | 132.850 | | VGG13 | 0.700 | 0.894 | | | 22.480 | 133.030 | | VGG16 | 0.720 | 0.907 | 0.715 | 0.901 | 30.810 | 138.340 | | VGG19 | 0.726 | 0.909 | | | 39.130 | 143.650 | | DarkNet53 | 0.780 | 0.941 | 0.772 | 0.938 | 18.580 | 41.600 | | ResNet50_ACNet | 0.767 | 0.932 | | | 10.730 | 33.110 | | ResNet50_ACNet
_deploy | 0.767 | 0.932 | | | 8.190 | 25.550 | ## FP32预测速度 | Models | Crop Size | Resize Short Size | Batch Size=1
(ms) | |---------------------------|-----------|-------------------|----------------------| | AlexNet | 224 | 256 | 1.176 | | SqueezeNet1_0 | 224 | 256 | 0.860 | | SqueezeNet1_1 | 224 | 256 | 0.763 | | VGG11 | 224 | 256 | 1.867 | | VGG13 | 224 | 256 | 2.148 | | VGG16 | 224 | 256 | 2.616 | | VGG19 | 224 | 256 | 3.076 | | DarkNet53 | 256 | 256 | 3.139 | | ResNet50_ACNet
_deploy | 224 | 256 | 5.626 |