#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from paddle import nn import copy from collections import OrderedDict from .metrics import TopkAcc, mAP, mINP, Recallk, RetriMetric class CombinedMetrics(nn.Layer): def __init__(self, config_list): super().__init__() self.metric_func_list = [] assert isinstance(config_list, list), ( 'operator config should be a list') self.retri_config = dict() # retrieval metrics config for config in config_list: assert isinstance(config, dict) and len(config) == 1, "yaml format error" metric_name = list(config)[0] if metric_name in ["Recallk", "mAP", "mINP"]: self.retri_config[metric_name] = config[metric_name] continue metric_params = config[metric_name] self.metric_func_list.append(eval(metric_name)(**metric_params)) if self.retri_config: self.metric_func_list.append(RetriMetric(self.retri_config)) def __call__(self, *args, **kwargs): metric_dict = OrderedDict() for idx, metric_func in enumerate(self.metric_func_list): metric_dict.update(metric_func(*args, **kwargs)) return metric_dict def build_metrics(config): metrics_list = CombinedMetrics(copy.deepcopy(config)) return metrics_list