# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import numpy as np import platform import paddle import sklearn from sklearn.model_selection import KFold from sklearn.decomposition import PCA from ppcls.utils.misc import AverageMeter from ppcls.utils import logger def fuse_features_with_norm(stacked_embeddings, stacked_norms): assert stacked_embeddings.ndim == 3 # (n_features_to_fuse, batch_size, channel) assert stacked_norms.ndim == 3 # (n_features_to_fuse, batch_size, 1) pre_norm_embeddings = stacked_embeddings * stacked_norms fused = pre_norm_embeddings.sum(axis=0) norm = paddle.norm(fused, 2, 1, True) fused = paddle.divide(fused, norm) return fused, norm def adaface_eval(engine, epoch_id=0): output_info = dict() time_info = { "batch_cost": AverageMeter( "batch_cost", '.5f', postfix=" s,"), "reader_cost": AverageMeter( "reader_cost", ".5f", postfix=" s,"), } print_batch_step = engine.config["Global"]["print_batch_step"] metric_key = None tic = time.time() unique_dict = {} for iter_id, batch in enumerate(engine.eval_dataloader): images, labels, dataname, image_index = batch if iter_id == 5: for key in time_info: time_info[key].reset() time_info["reader_cost"].update(time.time() - tic) batch_size = images.shape[0] batch[0] = paddle.to_tensor(images) embeddings = engine.model(images, labels)['features'] norms = paddle.divide(embeddings, paddle.norm(embeddings, 2, 1, True)) embeddings = paddle.divide(embeddings, norms) fliped_images = paddle.flip(images, axis=[3]) flipped_embeddings = engine.model(fliped_images, labels)['features'] flipped_norms = paddle.divide( flipped_embeddings, paddle.norm(flipped_embeddings, 2, 1, True)) flipped_embeddings = paddle.divide(flipped_embeddings, flipped_norms) stacked_embeddings = paddle.stack( [embeddings, flipped_embeddings], axis=0) stacked_norms = paddle.stack([norms, flipped_norms], axis=0) embeddings, norms = fuse_features_with_norm(stacked_embeddings, stacked_norms) for out, nor, label, data, idx in zip(embeddings, norms, labels, dataname, image_index): unique_dict[int(idx.numpy())] = { 'output': out, 'norm': nor, 'target': label, 'dataname': data } # calc metric time_info["batch_cost"].update(time.time() - tic) if iter_id % print_batch_step == 0: time_msg = "s, ".join([ "{}: {:.5f}".format(key, time_info[key].avg) for key in time_info ]) ips_msg = "ips: {:.5f} images/sec".format( batch_size / time_info["batch_cost"].avg) metric_msg = ", ".join([ "{}: {:.5f}".format(key, output_info[key].val) for key in output_info ]) logger.info("[Eval][Epoch {}][Iter: {}/{}]{}, {}, {}".format( epoch_id, iter_id, len(engine.eval_dataloader), metric_msg, time_msg, ips_msg)) tic = time.time() unique_keys = sorted(unique_dict.keys()) all_output_tensor = paddle.stack( [unique_dict[key]['output'] for key in unique_keys], axis=0) all_norm_tensor = paddle.stack( [unique_dict[key]['norm'] for key in unique_keys], axis=0) all_target_tensor = paddle.stack( [unique_dict[key]['target'] for key in unique_keys], axis=0) all_dataname_tensor = paddle.stack( [unique_dict[key]['dataname'] for key in unique_keys], axis=0) eval_result = cal_metric(all_output_tensor, all_norm_tensor, all_target_tensor, all_dataname_tensor) metric_msg = ", ".join([ "{}: {:.5f}".format(key, output_info[key].avg) for key in output_info ]) face_msg = ", ".join([ "{}: {:.5f}".format(key, eval_result[key]) for key in eval_result.keys() ]) logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg + ", " + face_msg)) # return 1st metric in the dict return eval_result['all_test_acc'] def cal_metric(all_output_tensor, all_norm_tensor, all_target_tensor, all_dataname_tensor): all_target_tensor = all_target_tensor.reshape([-1]) all_dataname_tensor = all_dataname_tensor.reshape([-1]) dataname_to_idx = { "agedb_30": 0, "cfp_fp": 1, "lfw": 2, "cplfw": 3, "calfw": 4 } idx_to_dataname = {val: key for key, val in dataname_to_idx.items()} test_logs = {} # _, indices = paddle.unique(all_dataname_tensor, return_index=True, return_inverse=False, return_counts=False) for dataname_idx in all_dataname_tensor.unique(): dataname = idx_to_dataname[dataname_idx.item()] # per dataset evaluation embeddings = all_output_tensor[all_dataname_tensor == dataname_idx].numpy() labels = all_target_tensor[all_dataname_tensor == dataname_idx].numpy() issame = labels[0::2] tpr, fpr, accuracy, best_thresholds = evaluate_face( embeddings, issame, nrof_folds=10) acc, best_threshold = accuracy.mean(), best_thresholds.mean() num_test_samples = len(embeddings) test_logs[f'{dataname}_test_acc'] = acc test_logs[f'{dataname}_test_best_threshold'] = best_threshold test_logs[f'{dataname}_num_test_samples'] = num_test_samples test_acc = np.mean([ test_logs[f'{dataname}_test_acc'] for dataname in dataname_to_idx.keys() if f'{dataname}_test_acc' in test_logs ]) test_logs['all_test_acc'] = test_acc return test_logs def evaluate_face(embeddings, actual_issame, nrof_folds=10, pca=0): # Calculate evaluation metrics thresholds = np.arange(0, 4, 0.01) embeddings1 = embeddings[0::2] embeddings2 = embeddings[1::2] tpr, fpr, accuracy, best_thresholds = calculate_roc( thresholds, embeddings1, embeddings2, np.asarray(actual_issame), nrof_folds=nrof_folds, pca=pca) return tpr, fpr, accuracy, best_thresholds def calculate_roc(thresholds, embeddings1, embeddings2, actual_issame, nrof_folds=10, pca=0): assert (embeddings1.shape[0] == embeddings2.shape[0]) assert (embeddings1.shape[1] == embeddings2.shape[1]) nrof_pairs = min(len(actual_issame), embeddings1.shape[0]) nrof_thresholds = len(thresholds) k_fold = KFold(n_splits=nrof_folds, shuffle=False) tprs = np.zeros((nrof_folds, nrof_thresholds)) fprs = np.zeros((nrof_folds, nrof_thresholds)) accuracy = np.zeros((nrof_folds)) best_thresholds = np.zeros((nrof_folds)) indices = np.arange(nrof_pairs) # print('pca', pca) dist = None if pca == 0: diff = np.subtract(embeddings1, embeddings2) dist = np.sum(np.square(diff), 1) for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)): # print('train_set', train_set) # print('test_set', test_set) if pca > 0: print('doing pca on', fold_idx) embed1_train = embeddings1[train_set] embed2_train = embeddings2[train_set] _embed_train = np.concatenate((embed1_train, embed2_train), axis=0) # print(_embed_train.shape) pca_model = PCA(n_components=pca) pca_model.fit(_embed_train) embed1 = pca_model.transform(embeddings1) embed2 = pca_model.transform(embeddings2) embed1 = sklearn.preprocessing.normalize(embed1) embed2 = sklearn.preprocessing.normalize(embed2) # print(embed1.shape, embed2.shape) diff = np.subtract(embed1, embed2) dist = np.sum(np.square(diff), 1) # Find the best threshold for the fold acc_train = np.zeros((nrof_thresholds)) for threshold_idx, threshold in enumerate(thresholds): _, _, acc_train[threshold_idx] = calculate_accuracy( threshold, dist[train_set], actual_issame[train_set]) best_threshold_index = np.argmax(acc_train) best_thresholds[fold_idx] = thresholds[best_threshold_index] for threshold_idx, threshold in enumerate(thresholds): tprs[fold_idx, threshold_idx], fprs[ fold_idx, threshold_idx], _ = calculate_accuracy( threshold, dist[test_set], actual_issame[test_set]) _, _, accuracy[fold_idx] = calculate_accuracy( thresholds[best_threshold_index], dist[test_set], actual_issame[test_set]) tpr = np.mean(tprs, 0) fpr = np.mean(fprs, 0) return tpr, fpr, accuracy, best_thresholds def calculate_accuracy(threshold, dist, actual_issame): predict_issame = np.less(dist, threshold) tp = np.sum(np.logical_and(predict_issame, actual_issame)) fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame))) tn = np.sum( np.logical_and( np.logical_not(predict_issame), np.logical_not(actual_issame))) fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame)) tpr = 0 if (tp + fn == 0) else float(tp) / float(tp + fn) fpr = 0 if (fp + tn == 0) else float(fp) / float(fp + tn) acc = float(tp + tn) / dist.size return tpr, fpr, acc