# global configs Global: checkpoints: null pretrained_model: null output_dir: "./output/" device: "gpu" save_interval: 1 eval_during_train: True eval_interval: 1 epochs: 360 print_batch_step: 10 use_visualdl: False # used for static mode and model export image_shape: [3, 224, 224] save_inference_dir: "./inference" use_dali: false # mixed precision training AMP: scale_loss: 128.0 use_dynamic_loss_scaling: True # O1: mixed fp16 level: O1 # model architecture Arch: name: "DistillationModel" class_num: &class_num 1000 # if not null, its lengths should be same as models pretrained_list: # if not null, its lengths should be same as models freeze_params_list: - True - False models: - Teacher: name: Res2Net200_vd_26w_4s class_num: *class_num pretrained: True use_ssld: True - Student: name: PPHGNet_base class_num: *class_num pretrained: False infer_model_name: "Student" # loss function config for traing/eval process Loss: Train: - DistillationCELoss: weight: 1.0 model_name_pairs: - ["Student", "Teacher"] Eval: - CELoss: weight: 1.0 Optimizer: name: Momentum momentum: 0.9 lr: name: Cosine learning_rate: 0.5 warmup_epoch: 5 regularizer: name: 'L2' coeff: 0.00004 # data loader for train and eval DataLoader: Train: dataset: name: ImageNetDataset image_root: "./dataset/ILSVRC2012/" cls_label_path: "./dataset/ILSVRC2012/train_list.txt" transform_ops: - DecodeImage: to_rgb: True channel_first: False - RandCropImage: size: 224 interpolation: bicubic backend: pil - RandFlipImage: flip_code: 1 - TimmAutoAugment: config_str: rand-m7-mstd0.5-inc1 interpolation: bicubic img_size: 224 - NormalizeImage: scale: 0.00392157 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' sampler: name: DistributedBatchSampler batch_size: 128 drop_last: False shuffle: True loader: num_workers: 8 use_shared_memory: True Eval: dataset: name: ImageNetDataset image_root: "./dataset/ILSVRC2012/" cls_label_path: "./dataset/ILSVRC2012/val_list.txt" transform_ops: - DecodeImage: to_rgb: True channel_first: False - ResizeImage: resize_short: 236 interpolation: bicubic backend: pil - CropImage: size: 224 - NormalizeImage: scale: 0.00392157 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' sampler: name: DistributedBatchSampler batch_size: 128 drop_last: False shuffle: False loader: num_workers: 8 use_shared_memory: True Infer: infer_imgs: "docs/images/inference_deployment/whl_demo.jpg" batch_size: 10 transforms: - DecodeImage: to_rgb: True channel_first: False - ResizeImage: resize_short: 236 - CropImage: size: 224 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - ToCHWImage: PostProcess: name: DistillationPostProcess func: Topk topk: 5 class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt" Metric: Train: - DistillationTopkAcc: model_key: "Student" topk: [1, 5] Eval: - DistillationTopkAcc: model_key: "Student" topk: [1, 5]