# global configs Global: checkpoints: null pretrained_model: null output_dir: ./output/ device: gpu save_interval: 1 eval_during_train: True eval_interval: 1 epochs: 350 print_batch_step: 20 use_visualdl: False train_mode: progressive # progressive training # used for static mode and model export image_shape: [3, 384, 384] save_inference_dir: ./inference AMP: use_amp: True use_fp16_test: False scale_loss: 65536 use_dynamic_loss_scaling: True use_promote: False # O1: mixed fp16, O2: pure fp16 level: O1 EMA: decay: 0.9999 # model architecture Arch: name: EfficientNetV2_S class_num: 1000 use_sync_bn: True # loss function config for traing/eval process Loss: Train: - CELoss: weight: 1.0 epsilon: 0.1 Eval: - CELoss: weight: 1.0 Optimizer: name: Momentum momentum: 0.9 lr: name: Cosine learning_rate: 0.65 # 8gpux128bs warmup_epoch: 5 regularizer: name: L2 coeff: 0.00001 # data loader for train and eval DataLoader: Train: dataset: name: ImageNetDataset image_root: ./dataset/ILSVRC2012/ cls_label_path: ./dataset/ILSVRC2012/train_list.txt transform_ops: - DecodeImage: to_rgb: True channel_first: False - RandCropImage: size: 171 progress_size: [171, 214, 257, 300] scale: [0.05, 1.0] - RandFlipImage: flip_code: 1 - RandAugmentV2: num_layers: 2 magnitude: 5.0 progress_magnitude: [5.0, 8.3333333333, 11.66666666667, 15.0] - NormalizeImage: scale: 1.0 mean: [128.0, 128.0, 128.0] std: [128.0, 128.0, 128.0] order: "" sampler: name: DistributedBatchSampler batch_size: 128 drop_last: True shuffle: True loader: num_workers: 8 use_shared_memory: True Eval: dataset: name: ImageNetDataset image_root: ./dataset/ILSVRC2012/ cls_label_path: ./dataset/ILSVRC2012/val_list.txt transform_ops: - DecodeImage: to_rgb: True channel_first: False - CropImageAtRatio: size: 384 pad: 32 interpolation: bilinear - NormalizeImage: scale: 1.0 mean: [128.0, 128.0, 128.0] std: [128.0, 128.0, 128.0] order: "" sampler: name: DistributedBatchSampler batch_size: 128 drop_last: False shuffle: False loader: num_workers: 8 use_shared_memory: True Infer: infer_imgs: docs/images/inference_deployment/whl_demo.jpg batch_size: 10 transforms: - DecodeImage: to_rgb: True channel_first: False - CropImageAtRatio: size: 384 pad: 32 interpolation: bilinear - NormalizeImage: scale: 1.0 mean: [128.0, 128.0, 128.0] std: [128.0, 128.0, 128.0] order: "" PostProcess: name: Topk topk: 5 class_id_map_file: ppcls/utils/imagenet1k_label_list.txt Metric: Train: - TopkAcc: topk: [1, 5] Eval: - TopkAcc: topk: [1, 5]