# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from paddle import ParamAttr, reshape, transpose, concat, split from paddle.nn import Layer, Conv2D, MaxPool2D, AdaptiveAvgPool2D, BatchNorm, Linear from paddle.nn.initializer import KaimingNormal from paddle.nn.functional import swish __all__ = [ "ShuffleNetV2_x0_25", "ShuffleNetV2_x0_33", "ShuffleNetV2_x0_5", "ShuffleNetV2_x1_0", "ShuffleNetV2_x1_5", "ShuffleNetV2_x2_0", "ShuffleNetV2_swish" ] def channel_shuffle(x, groups): batch_size, num_channels, height, width = x.shape[0:4] channels_per_group = num_channels // groups # reshape x = reshape( x=x, shape=[batch_size, groups, channels_per_group, height, width]) # transpose x = transpose(x=x, perm=[0, 2, 1, 3, 4]) # flatten x = reshape(x=x, shape=[batch_size, num_channels, height, width]) return x class ConvBNLayer(Layer): def __init__( self, in_channels, out_channels, kernel_size, stride, padding, groups=1, act=None, name=None, ): super(ConvBNLayer, self).__init__() self._conv = Conv2D( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, weight_attr=ParamAttr( initializer=KaimingNormal(), name=name + "_weights"), bias_attr=False) self._batch_norm = BatchNorm( out_channels, param_attr=ParamAttr(name=name + "_bn_scale"), bias_attr=ParamAttr(name=name + "_bn_offset"), act=act, moving_mean_name=name + "_bn_mean", moving_variance_name=name + "_bn_variance") def forward(self, inputs): y = self._conv(inputs) y = self._batch_norm(y) return y class InvertedResidual(Layer): def __init__(self, in_channels, out_channels, stride, act="relu", name=None): super(InvertedResidual, self).__init__() self._conv_pw = ConvBNLayer( in_channels=in_channels // 2, out_channels=out_channels // 2, kernel_size=1, stride=1, padding=0, groups=1, act=act, name='stage_' + name + '_conv1') self._conv_dw = ConvBNLayer( in_channels=out_channels // 2, out_channels=out_channels // 2, kernel_size=3, stride=stride, padding=1, groups=out_channels // 2, act=None, name='stage_' + name + '_conv2') self._conv_linear = ConvBNLayer( in_channels=out_channels // 2, out_channels=out_channels // 2, kernel_size=1, stride=1, padding=0, groups=1, act=act, name='stage_' + name + '_conv3') def forward(self, inputs): x1, x2 = split( inputs, num_or_sections=[inputs.shape[1] // 2, inputs.shape[1] // 2], axis=1) x2 = self._conv_pw(x2) x2 = self._conv_dw(x2) x2 = self._conv_linear(x2) out = concat([x1, x2], axis=1) return channel_shuffle(out, 2) class InvertedResidualDS(Layer): def __init__(self, in_channels, out_channels, stride, act="relu", name=None): super(InvertedResidualDS, self).__init__() # branch1 self._conv_dw_1 = ConvBNLayer( in_channels=in_channels, out_channels=in_channels, kernel_size=3, stride=stride, padding=1, groups=in_channels, act=None, name='stage_' + name + '_conv4') self._conv_linear_1 = ConvBNLayer( in_channels=in_channels, out_channels=out_channels // 2, kernel_size=1, stride=1, padding=0, groups=1, act=act, name='stage_' + name + '_conv5') # branch2 self._conv_pw_2 = ConvBNLayer( in_channels=in_channels, out_channels=out_channels // 2, kernel_size=1, stride=1, padding=0, groups=1, act=act, name='stage_' + name + '_conv1') self._conv_dw_2 = ConvBNLayer( in_channels=out_channels // 2, out_channels=out_channels // 2, kernel_size=3, stride=stride, padding=1, groups=out_channels // 2, act=None, name='stage_' + name + '_conv2') self._conv_linear_2 = ConvBNLayer( in_channels=out_channels // 2, out_channels=out_channels // 2, kernel_size=1, stride=1, padding=0, groups=1, act=act, name='stage_' + name + '_conv3') def forward(self, inputs): x1 = self._conv_dw_1(inputs) x1 = self._conv_linear_1(x1) x2 = self._conv_pw_2(inputs) x2 = self._conv_dw_2(x2) x2 = self._conv_linear_2(x2) out = concat([x1, x2], axis=1) return channel_shuffle(out, 2) class ShuffleNet(Layer): def __init__(self, class_dim=1000, scale=1.0, act="relu"): super(ShuffleNet, self).__init__() self.scale = scale self.class_dim = class_dim stage_repeats = [4, 8, 4] if scale == 0.25: stage_out_channels = [-1, 24, 24, 48, 96, 512] elif scale == 0.33: stage_out_channels = [-1, 24, 32, 64, 128, 512] elif scale == 0.5: stage_out_channels = [-1, 24, 48, 96, 192, 1024] elif scale == 1.0: stage_out_channels = [-1, 24, 116, 232, 464, 1024] elif scale == 1.5: stage_out_channels = [-1, 24, 176, 352, 704, 1024] elif scale == 2.0: stage_out_channels = [-1, 24, 224, 488, 976, 2048] else: raise NotImplementedError("This scale size:[" + str(scale) + "] is not implemented!") # 1. conv1 self._conv1 = ConvBNLayer( in_channels=3, out_channels=stage_out_channels[1], kernel_size=3, stride=2, padding=1, act=act, name='stage1_conv') self._max_pool = MaxPool2D(kernel_size=3, stride=2, padding=1) # 2. bottleneck sequences self._block_list = [] for stage_id, num_repeat in enumerate(stage_repeats): for i in range(num_repeat): if i == 0: block = self.add_sublayer( name=str(stage_id + 2) + '_' + str(i + 1), sublayer=InvertedResidualDS( in_channels=stage_out_channels[stage_id + 1], out_channels=stage_out_channels[stage_id + 2], stride=2, act=act, name=str(stage_id + 2) + '_' + str(i + 1))) else: block = self.add_sublayer( name=str(stage_id + 2) + '_' + str(i + 1), sublayer=InvertedResidual( in_channels=stage_out_channels[stage_id + 2], out_channels=stage_out_channels[stage_id + 2], stride=1, act=act, name=str(stage_id + 2) + '_' + str(i + 1))) self._block_list.append(block) # 3. last_conv self._last_conv = ConvBNLayer( in_channels=stage_out_channels[-2], out_channels=stage_out_channels[-1], kernel_size=1, stride=1, padding=0, act=act, name='conv5') # 4. pool self._pool2d_avg = AdaptiveAvgPool2D(1) self._out_c = stage_out_channels[-1] # 5. fc self._fc = Linear( stage_out_channels[-1], class_dim, weight_attr=ParamAttr(name='fc6_weights'), bias_attr=ParamAttr(name='fc6_offset')) def forward(self, inputs): y = self._conv1(inputs) y = self._max_pool(y) for inv in self._block_list: y = inv(y) y = self._last_conv(y) y = self._pool2d_avg(y) y = reshape(y, shape=[-1, self._out_c]) y = self._fc(y) return y def ShuffleNetV2_x0_25(**args): model = ShuffleNet(scale=0.25, **args) return model def ShuffleNetV2_x0_33(**args): model = ShuffleNet(scale=0.33, **args) return model def ShuffleNetV2_x0_5(**args): model = ShuffleNet(scale=0.5, **args) return model def ShuffleNetV2_x1_0(**args): model = ShuffleNet(scale=1.0, **args) return model def ShuffleNetV2_x1_5(**args): model = ShuffleNet(scale=1.5, **args) return model def ShuffleNetV2_x2_0(**args): model = ShuffleNet(scale=2.0, **args) return model def ShuffleNetV2_swish(**args): model = ShuffleNet(scale=1.0, act="swish", **args) return model