# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from ppcls.modeling import architectures import paddle.fluid as fluid import paddle_serving_client.io as serving_io def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("-m", "--model", type=str) parser.add_argument("-p", "--pretrained_model", type=str) parser.add_argument("-o", "--output_path", type=str, default="") parser.add_argument("--class_dim", type=int, default=1000) parser.add_argument("--img_size", type=int, default=224) return parser.parse_args() def create_input(img_size=224): image = fluid.data( name='image', shape=[None, 3, img_size, img_size], dtype='float32') return image def create_model(args, model, input, class_dim=1000): if args.model == "GoogLeNet": out, _, _ = model.net(input=input, class_dim=class_dim) else: out = model.net(input=input, class_dim=class_dim) out = fluid.layers.softmax(out) return out def main(): args = parse_args() model = architectures.__dict__[args.model]() place = fluid.CPUPlace() exe = fluid.Executor(place) startup_prog = fluid.Program() infer_prog = fluid.Program() with fluid.program_guard(infer_prog, startup_prog): with fluid.unique_name.guard(): image = create_input(args.img_size) out = create_model(args, model, image, class_dim=args.class_dim) infer_prog = infer_prog.clone(for_test=True) fluid.load( program=infer_prog, model_path=args.pretrained_model, executor=exe) model_path = os.path.join(args.output_path, "ppcls_model") conf_path = os.path.join(args.output_path, "ppcls_client_conf") serving_io.save_model(model_path, conf_path, {"image": image}, {"prediction": out}, infer_prog) if __name__ == "__main__": main()