# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import paddle import paddle.regularizer as regularizer __all__ = ['OptimizerBuilder'] class L1Decay(object): """ L1 Weight Decay Regularization, which encourages the weights to be sparse. Args: factor(float): regularization coeff. Default:0.0. """ def __init__(self, factor=0.0): super(L1Decay, self).__init__() self.factor = factor def __call__(self): reg = regularizer.L1Decay(self.factor) return reg class L2Decay(object): """ L2 Weight Decay Regularization, which encourages the weights to be sparse. Args: factor(float): regularization coeff. Default:0.0. """ def __init__(self, factor=0.0): super(L2Decay, self).__init__() self.factor = factor def __call__(self): reg = regularizer.L2Decay(self.factor) return reg class Momentum(object): """ Simple Momentum optimizer with velocity state. Args: learning_rate (float|Variable) - The learning rate used to update parameters. Can be a float value or a Variable with one float value as data element. momentum (float) - Momentum factor. regularization (WeightDecayRegularizer, optional) - The strategy of regularization. """ def __init__(self, learning_rate, momentum, parameter_list=None, regularization=None, multi_precision=False, **args): super(Momentum, self).__init__() self.learning_rate = learning_rate self.momentum = momentum self.parameter_list = parameter_list self.regularization = regularization self.multi_precision = multi_precision def __call__(self): opt = paddle.optimizer.Momentum( learning_rate=self.learning_rate, momentum=self.momentum, parameters=self.parameter_list, weight_decay=self.regularization, multi_precision=self.multi_precision) return opt class RMSProp(object): """ Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning rate method. Args: learning_rate (float|Variable) - The learning rate used to update parameters. Can be a float value or a Variable with one float value as data element. momentum (float) - Momentum factor. rho (float) - rho value in equation. epsilon (float) - avoid division by zero, default is 1e-6. regularization (WeightDecayRegularizer, optional) - The strategy of regularization. """ def __init__(self, learning_rate, momentum, rho=0.95, epsilon=1e-6, parameter_list=None, regularization=None, **args): super(RMSProp, self).__init__() self.learning_rate = learning_rate self.momentum = momentum self.rho = rho self.epsilon = epsilon self.parameter_list = parameter_list self.regularization = regularization def __call__(self): opt = paddle.optimizer.RMSProp( learning_rate=self.learning_rate, momentum=self.momentum, rho=self.rho, epsilon=self.epsilon, parameters=self.parameter_list, weight_decay=self.regularization) return opt class OptimizerBuilder(object): """ Build optimizer Args: function(str): optimizer name of learning rate params(dict): parameters used for init the class regularizer (dict): parameters used for create regularization """ def __init__(self, function='Momentum', params={'momentum': 0.9}, regularizer=None): self.function = function self.params = params # create regularizer if regularizer is not None: mod = sys.modules[__name__] reg_func = regularizer['function'] + 'Decay' del regularizer['function'] reg = getattr(mod, reg_func)(**regularizer)() self.params['regularization'] = reg def __call__(self, learning_rate, parameter_list=None): mod = sys.modules[__name__] opt = getattr(mod, self.function) return opt(learning_rate=learning_rate, parameter_list=parameter_list, **self.params)()