# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.abspath(os.path.join(__dir__, '../'))) from utils import logger from utils import config from utils.predictor import Predictor from utils.get_image_list import get_image_list from det_preprocess import det_preprocess from preprocess import create_operators import os import argparse import time import yaml import ast from functools import reduce import cv2 import numpy as np import paddle class DetPredictor(Predictor): def __init__(self, config): super().__init__(config["Global"], config["Global"]["det_inference_model_dir"]) self.preprocess_ops = create_operators(config["DetPreProcess"][ "transform_ops"]) self.config = config def preprocess(self, img): im_info = { 'scale_factor': np.array( [1., 1.], dtype=np.float32), 'im_shape': np.array( img.shape[:2], dtype=np.float32), 'input_shape': self.config["Global"]["image_shape"], "scale_factor": np.array( [1., 1.], dtype=np.float32) } im, im_info = det_preprocess(img, im_info, self.preprocess_ops) inputs = self.create_inputs(im, im_info) return inputs def create_inputs(self, im, im_info): """generate input for different model type Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image model_arch (str): model type Returns: inputs (dict): input of model """ inputs = {} inputs['image'] = np.array((im, )).astype('float32') inputs['im_shape'] = np.array( (im_info['im_shape'], )).astype('float32') inputs['scale_factor'] = np.array( (im_info['scale_factor'], )).astype('float32') return inputs def parse_det_results(self, pred, threshold, label_list): max_det_results = self.config["Global"]["max_det_results"] keep_indexes = pred[:, 1].argsort()[::-1][:max_det_results] results = [] for idx in keep_indexes: single_res = pred[idx] class_id = int(single_res[0]) score = single_res[1] bbox = single_res[2:] if score < threshold: continue label_name = label_list[class_id] results.append({ "class_id": class_id, "score": score, "bbox": bbox, "label_name": label_name, }) return results def predict(self, image, threshold=0.5, run_benchmark=False): ''' Args: image (str/np.ndarray): path of image/ np.ndarray read by cv2 threshold (float): threshold of predicted box' score Returns: results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] MaskRCNN's results include 'masks': np.ndarray: shape: [N, im_h, im_w] ''' inputs = self.preprocess(image) np_boxes = None input_names = self.predictor.get_input_names() for i in range(len(input_names)): input_tensor = self.predictor.get_input_handle(input_names[i]) input_tensor.copy_from_cpu(inputs[input_names[i]]) t1 = time.time() self.predictor.run() output_names = self.predictor.get_output_names() boxes_tensor = self.predictor.get_output_handle(output_names[0]) np_boxes = boxes_tensor.copy_to_cpu() t2 = time.time() print("Inference: {} ms per batch image".format((t2 - t1) * 1000.0)) # do not perform postprocess in benchmark mode results = [] if reduce(lambda x, y: x * y, np_boxes.shape) < 6: print('[WARNNING] No object detected.') else: results = self.parse_det_results( np_boxes, self.config["Global"]["threshold"], self.config["Global"]["label_list"]) return results def main(config): det_predictor = DetPredictor(config) image_list = get_image_list(config["Global"]["infer_imgs"]) assert config["Global"]["batch_size"] == 1 for idx, image_file in enumerate(image_list): img = cv2.imread(image_file)[:, :, ::-1] output = det_predictor.predict(img) print(output) return if __name__ == "__main__": args = config.parse_args() config = config.get_config(args.config, overrides=args.override, show=True) main(config)