# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Code was heavily based on https://github.com/whai362/PVT from functools import partial import math import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle.nn.initializer import TruncatedNormal, Constant from .vision_transformer import trunc_normal_, zeros_, ones_, to_2tuple, DropPath, Identity, drop_path from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url MODEL_URLS = { "PVT_V2_B0": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B0_pretrained.pdparams", "PVT_V2_B1": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B1_pretrained.pdparams", "PVT_V2_B2": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B2_pretrained.pdparams", "PVT_V2_B2_Linear": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B2_Linear_pretrained.pdparams", "PVT_V2_B3": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B3_pretrained.pdparams", "PVT_V2_B4": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B4_pretrained.pdparams", "PVT_V2_B5": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B5_pretrained.pdparams", } __all__ = list(MODEL_URLS.keys()) @paddle.jit.not_to_static def swapdim(x, dim1, dim2): a = list(range(len(x.shape))) a[dim1], a[dim2] = a[dim2], a[dim1] return x.transpose(a) class Mlp(nn.Layer): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., linear=False): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.dwconv = DWConv(hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) self.linear = linear if self.linear: self.relu = nn.ReLU() def forward(self, x, H, W): x = self.fc1(x) if self.linear: x = self.relu(x) x = self.dwconv(x, H, W) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Layer): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1, linear=False): super().__init__() assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." self.dim = dim self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim**-0.5 self.q = nn.Linear(dim, dim, bias_attr=qkv_bias) self.kv = nn.Linear(dim, dim * 2, bias_attr=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.linear = linear self.sr_ratio = sr_ratio if not linear: if sr_ratio > 1: self.sr = nn.Conv2D( dim, dim, kernel_size=sr_ratio, stride=sr_ratio) self.norm = nn.LayerNorm(dim) else: self.pool = nn.AdaptiveAvgPool2D(7) self.sr = nn.Conv2D(dim, dim, kernel_size=1, stride=1) self.norm = nn.LayerNorm(dim) self.act = nn.GELU() def forward(self, x, H, W): B, N, C = x.shape q = self.q(x).reshape( [B, N, self.num_heads, C // self.num_heads]).transpose( [0, 2, 1, 3]) if not self.linear: if self.sr_ratio > 1: x_ = x.transpose([0, 2, 1]).reshape([B, C, H, W]) x_ = self.sr(x_) h_, w_ = x_.shape[-2:] x_ = x_.reshape([B, C, h_ * w_]).transpose([0, 2, 1]) x_ = self.norm(x_) kv = self.kv(x_) kv = kv.reshape([ B, kv.shape[2] * kv.shape[1] // 2 // C, 2, self.num_heads, C // self.num_heads ]).transpose([2, 0, 3, 1, 4]) else: kv = self.kv(x) kv = kv.reshape([ B, kv.shape[2] * kv.shape[1] // 2 // C, 2, self.num_heads, C // self.num_heads ]).transpose([2, 0, 3, 1, 4]) else: x_ = x.transpose([0, 2, 1]).reshape([B, C, H, W]) x_ = self.sr(self.pool(x_)) x_ = x_.reshape([B, C, x_.shape[2] * x_.shape[3]]).transpose( [0, 2, 1]) x_ = self.norm(x_) x_ = self.act(x_) kv = self.kv(x_) kv = kv.reshape([ B, kv.shape[2] * kv.shape[1] // 2 // C, 2, self.num_heads, C // self.num_heads ]).transpose([2, 0, 3, 1, 4]) k, v = kv[0], kv[1] attn = (q @swapdim(k, -2, -1)) * self.scale attn = F.softmax(attn, axis=-1) attn = self.attn_drop(attn) x = swapdim((attn @v), 1, 2).reshape([B, N, C]) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Layer): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1, linear=False): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio, linear=linear) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, linear=linear) def forward(self, x, H, W): x = x + self.drop_path(self.attn(self.norm1(x), H, W)) x = x + self.drop_path(self.mlp(self.norm2(x), H, W)) return x class OverlapPatchEmbed(nn.Layer): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size self.H, self.W = img_size[0] // patch_size[0], img_size[ 1] // patch_size[1] self.num_patches = self.H * self.W self.proj = nn.Conv2D( in_chans, embed_dim, kernel_size=patch_size, stride=stride, padding=(patch_size[0] // 2, patch_size[1] // 2)) self.norm = nn.LayerNorm(embed_dim) def forward(self, x): x = self.proj(x) _, _, H, W = x.shape x = x.flatten(2) x = swapdim(x, 1, 2) x = self.norm(x) return x, H, W class PyramidVisionTransformerV2(nn.Layer): def __init__(self, img_size=224, patch_size=16, in_chans=3, class_num=1000, embed_dims=[64, 128, 256, 512], num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], num_stages=4, linear=False): super().__init__() self.class_num = class_num self.depths = depths self.num_stages = num_stages dpr = [x for x in paddle.linspace(0, drop_path_rate, sum(depths)) ] # stochastic depth decay rule cur = 0 for i in range(num_stages): patch_embed = OverlapPatchEmbed( img_size=img_size if i == 0 else img_size // (2**(i + 1)), patch_size=7 if i == 0 else 3, stride=4 if i == 0 else 2, in_chans=in_chans if i == 0 else embed_dims[i - 1], embed_dim=embed_dims[i]) block = nn.LayerList([ Block( dim=embed_dims[i], num_heads=num_heads[i], mlp_ratio=mlp_ratios[i], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + j], norm_layer=norm_layer, sr_ratio=sr_ratios[i], linear=linear) for j in range(depths[i]) ]) norm = norm_layer(embed_dims[i]) cur += depths[i] setattr(self, f"patch_embed{i + 1}", patch_embed) setattr(self, f"block{i + 1}", block) setattr(self, f"norm{i + 1}", norm) # classification head self.head = nn.Linear(embed_dims[3], class_num) if class_num > 0 else Identity() self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: zeros_(m.bias) elif isinstance(m, nn.LayerNorm): zeros_(m.bias) ones_(m.weight) def forward_features(self, x): B = x.shape[0] for i in range(self.num_stages): patch_embed = getattr(self, f"patch_embed{i + 1}") block = getattr(self, f"block{i + 1}") norm = getattr(self, f"norm{i + 1}") x, H, W = patch_embed(x) for blk in block: x = blk(x, H, W) x = norm(x) if i != self.num_stages - 1: x = x.reshape([B, H, W, x.shape[2]]).transpose([0, 3, 1, 2]) return x.mean(axis=1) def forward(self, x): x = self.forward_features(x) x = self.head(x) return x class DWConv(nn.Layer): def __init__(self, dim=768): super().__init__() self.dwconv = nn.Conv2D(dim, dim, 3, 1, 1, bias_attr=True, groups=dim) def forward(self, x, H, W): B, N, C = x.shape x = swapdim(x, 1, 2) x = x.reshape([B, C, H, W]) x = self.dwconv(x) x = x.flatten(2) x = swapdim(x, 1, 2) return x def _load_pretrained(pretrained, model, model_url, use_ssld=False): if pretrained is False: pass elif pretrained is True: load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) elif isinstance(pretrained, str): load_dygraph_pretrain(model, pretrained) else: raise RuntimeError( "pretrained type is not available. Please use `string` or `boolean` type." ) def PVT_V2_B0(pretrained=False, use_ssld=False, **kwargs): model = PyramidVisionTransformerV2( patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial( nn.LayerNorm, epsilon=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["PVT_V2_B0"], use_ssld=use_ssld) return model def PVT_V2_B1(pretrained=False, use_ssld=False, **kwargs): model = PyramidVisionTransformerV2( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial( nn.LayerNorm, epsilon=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["PVT_V2_B1"], use_ssld=use_ssld) return model def PVT_V2_B2(pretrained=False, use_ssld=False, **kwargs): model = PyramidVisionTransformerV2( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial( nn.LayerNorm, epsilon=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["PVT_V2_B2"], use_ssld=use_ssld) return model def PVT_V2_B3(pretrained=False, use_ssld=False, **kwargs): model = PyramidVisionTransformerV2( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial( nn.LayerNorm, epsilon=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1], **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["PVT_V2_B3"], use_ssld=use_ssld) return model def PVT_V2_B4(pretrained=False, use_ssld=False, **kwargs): model = PyramidVisionTransformerV2( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial( nn.LayerNorm, epsilon=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1], **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["PVT_V2_B4"], use_ssld=use_ssld) return model def PVT_V2_B5(pretrained=False, use_ssld=False, **kwargs): model = PyramidVisionTransformerV2( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=True, norm_layer=partial( nn.LayerNorm, epsilon=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1], **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["PVT_V2_B5"], use_ssld=use_ssld) return model def PVT_V2_B2_Linear(pretrained=False, use_ssld=False, **kwargs): model = PyramidVisionTransformerV2( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial( nn.LayerNorm, epsilon=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], linear=True, **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["PVT_V2_B2_Linear"], use_ssld=use_ssld) return model