# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle import paddle.nn as nn from functools import lru_cache # TODO: fix the format class TopkAcc(nn.Layer): def __init__(self, topk=(1, 5)): super().__init__() assert isinstance(topk, (int, list, tuple)) if isinstance(topk, int): topk = [topk] self.topk = topk def forward(self, x, label): if isinstance(x, dict): x = x["logits"] metric_dict = dict() for k in self.topk: metric_dict["top{}".format(k)] = paddle.metric.accuracy( x, label, k=k) return metric_dict class mAP(nn.Layer): def __init__(self): super().__init__() def forward(self, similarities_matrix, query_img_id, gallery_img_id): metric_dict = dict() _, all_AP, _ = get_metrics(similarities_matrix, query_img_id, gallery_img_id) mAP = np.mean(all_AP) metric_dict["mAP"] = mAP return metric_dict class mINP(nn.Layer): def __init__(self): super().__init__() def forward(self, similarities_matrix, query_img_id, gallery_img_id): metric_dict = dict() _, _, all_INP = get_metrics(similarities_matrix, query_img_id, gallery_img_id) mINP = np.mean(all_INP) metric_dict["mINP"] = mINP return metric_dict class Recallk(nn.Layer): def __init__(self, topk=(1, 5)): super().__init__() assert isinstance(topk, (int, list)) if isinstance(topk, int): topk = [topk] self.topk = topk self.max_rank = max(self.topk) if max(self.topk) > 50 else 50 def forward(self, similarities_matrix, query_img_id, gallery_img_id): metric_dict = dict() all_cmc, _, _ = get_metrics(similarities_matrix, query_img_id, gallery_img_id, self.max_rank) for k in self.topk: metric_dict["recall{}".format(k)] = all_cmc[k - 1] return metric_dict @lru_cache() def get_metrics(similarities_matrix, query_img_id, gallery_img_id, max_rank=50): num_q, num_g = similarities_matrix.shape q_pids = query_img_id.numpy().reshape((query_img_id.shape[0])) g_pids = gallery_img_id.numpy().reshape((gallery_img_id.shape[0])) if num_g < max_rank: max_rank = num_g print('Note: number of gallery samples is quite small, got {}'.format( num_g)) indices = paddle.argsort( similarities_matrix, axis=1, descending=True).numpy() all_cmc = [] all_AP = [] all_INP = [] num_valid_q = 0 matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32) for q_idx in range(num_q): raw_cmc = matches[q_idx] if not np.any(raw_cmc): continue cmc = raw_cmc.cumsum() pos_idx = np.where(raw_cmc == 1) max_pos_idx = np.max(pos_idx) inp = cmc[max_pos_idx] / (max_pos_idx + 1.0) all_INP.append(inp) cmc[cmc > 1] = 1 all_cmc.append(cmc[:max_rank]) num_valid_q += 1. num_rel = raw_cmc.sum() tmp_cmc = raw_cmc.cumsum() tmp_cmc = [x / (i + 1.) for i, x in enumerate(tmp_cmc)] tmp_cmc = np.asarray(tmp_cmc) * raw_cmc AP = tmp_cmc.sum() / num_rel all_AP.append(AP) assert num_valid_q > 0, 'Error: all query identities do not appear in gallery' all_cmc = np.asarray(all_cmc).astype(np.float32) all_cmc = all_cmc.sum(0) / num_valid_q return all_cmc, all_AP, all_INP