未验证 提交 ff232a58 编写于 作者: B Bin Lu 提交者: GitHub

Merge pull request #779 from RainFrost1/develop_reg

Add TrainerReID
# global configs
Trainer:
name: TrainerReID
Global:
checkpoints: null
pretrained_model: null
output_dir: "./output/"
device: "gpu"
class_num: 30671
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 160
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: "./inference"
num_split: 1
feature_normalize: True
# model architecture
Arch:
name: "RecModel"
Backbone:
name: "ResNet50"
Stoplayer:
name: "flatten_0"
output_dim: 2048
embedding_size: 512
Head:
name: "ArcMargin"
embedding_size: 512
class_num: 431
margin: 0.15
scale: 32
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
- TripletLossV2:
weight: 1.0
margin: 0.5
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: MultiStepDecay
learning_rate: 0.01
milestones: [30, 60, 70, 80, 90, 100, 120, 140]
gamma: 0.5
verbose: False
last_epoch: -1
regularizer:
name: 'L2'
coeff: 0.0005
# data loader for train and eval
DataLoader:
Train:
dataset:
name: "VeriWild"
image_root: "/work/dataset/VeRI-Wild/images/"
cls_label_path: "/work/dataset/VeRI-Wild/train_test_split/debug_train.txt"
transform_ops:
- ResizeImage:
size: 224
- RandFlipImage:
flip_code: 1
- AugMix:
prob: 0.5
- NormalizeImage:
scale: 0.00392157
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- RandomErasing:
EPSILON: 0.5
sl: 0.02
sh: 0.4
r1: 0.3
mean: [0., 0., 0.]
sampler:
name: DistributedRandomIdentitySampler
batch_size: 128
num_instances: 2
drop_last: False
shuffle: True
loader:
num_workers: 6
use_shared_memory: False
Query:
# TOTO: modify to the latest trainer
dataset:
name: "VeriWild"
image_root: "/work/dataset/VeRI-Wild/images"
cls_label_path: "/work/dataset/VeRI-Wild/train_test_split/debug_test_query.txt"
transform_ops:
- ResizeImage:
size: 224
- NormalizeImage:
scale: 0.00392157
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: False
loader:
num_workers: 6
use_shared_memory: False
Gallery:
# TOTO: modify to the latest trainer
dataset:
name: "VeriWild"
image_root: "/work/dataset/VeRI-Wild/images"
cls_label_path: "/work/dataset/VeRI-Wild/train_test_split/debug_test.txt"
transform_ops:
- ResizeImage:
size: 224
- NormalizeImage:
scale: 0.00392157
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: False
loader:
num_workers: 6
use_shared_memory: False
Infer:
infer_imgs: "docs/images/whl/demo.jpg"
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
......@@ -27,14 +27,13 @@ from ppcls.data.dataloader.common_dataset import create_operators
from ppcls.data.dataloader.vehicle_dataset import CompCars, VeriWild
# sampler
from ppcls.data.dataloader import DistributedRandomIdentitySampler
from ppcls.data.dataloader.DistributedRandomIdentitySampler import DistributedRandomIdentitySampler
from ppcls.data.preprocess import transform
def build_dataloader(config, mode, device, seed=None):
assert mode in ['Train', 'Eval', 'Test'
], "Mode should be Train, Eval or Test."
assert mode in ['Train', 'Eval', 'Test', 'Gallery', 'Query'
], "Mode should be Train, Eval, Test, Gallery or Query"
# build dataset
config_dataset = config[mode]['dataset']
config_dataset = copy.deepcopy(config_dataset)
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -109,8 +109,10 @@ class Trainer(object):
def train(self):
# build train loss and metric info
loss_func = self._build_loss_info(self.config["Loss"])
if "Metric" in self.config:
metric_func = self._build_metric_info(self.config["Metric"])
else:
metric_func = None
train_dataloader = build_dataloader(self.config["DataLoader"], "Train",
self.device)
......@@ -156,7 +158,7 @@ class Trainer(object):
else:
out = self.model(batch[0], batch[1])
# calc loss
loss_dict = loss_func(out, batch[-1])
loss_dict = loss_func(out, batch[1])
for key in loss_dict:
if not key in output_info:
output_info[key] = AverageMeter(key, '7.5f')
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '../../')))
import numpy as np
import paddle
from .trainer import Trainer
from ppcls.utils import logger
from ppcls.data import build_dataloader
class TrainerReID(Trainer):
def __init__(self, config, mode="train"):
super().__init__(config, mode)
self.gallery_dataloader = build_dataloader(self.config["DataLoader"],
"Gallery", self.device)
self.query_dataloader = build_dataloader(self.config["DataLoader"],
"Query", self.device)
@paddle.no_grad()
def eval(self, epoch_id=0):
output_info = dict()
self.model.eval()
print_batch_step = self.config["Global"]["print_batch_step"]
# step1. build gallery
gallery_feas, gallery_img_id, gallery_camera_id = self._cal_feature(
name='gallery')
query_feas, query_img_id, query_camera_id = self._cal_feature(
name='query')
# step2. do evaluation
if "num_split" in self.config["Global"]:
num_split = self.config["Global"]["num_split"]
else:
num_split = 1
fea_blocks = paddle.split(query_feas, num_or_sections=1)
total_similarities_matrix = None
for block_fea in fea_blocks:
similarities_matrix = paddle.matmul(
block_fea, gallery_feas, transpose_y=True)
if total_similarities_matrix is None:
total_similarities_matrix = similarities_matrix
else:
total_similarities_matrix = paddle.concat(
[total_similarities_matrix, similarities_matrix])
# distmat = (1 - total_similarities_matrix).numpy()
q_pids = query_img_id.numpy().reshape((query_img_id.shape[0]))
g_pids = gallery_img_id.numpy().reshape((gallery_img_id.shape[0]))
if query_camera_id is not None and gallery_camera_id is not None:
q_camids = query_camera_id.numpy().reshape(
(query_camera_id.shape[0]))
g_camids = gallery_camera_id.numpy().reshape(
(gallery_camera_id.shape[0]))
max_rank = 50
num_q, num_g = total_similarities_matrix.shape
if num_g < max_rank:
max_rank = num_g
print('Note: number of gallery samples is quite small, got {}'.
format(num_g))
# indices = np.argsort(distmat, axis=1)
indices = paddle.argsort(
total_similarities_matrix, axis=1, descending=True).numpy()
matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32)
# compute cmc curve for each query
all_cmc = []
all_AP = []
all_INP = []
num_valid_q = 0. # number of valid query
for q_idx in range(num_q):
# get query pid and camid
q_pid = q_pids[q_idx]
q_camid = q_camids[q_idx]
# remove gallery samples that have the same pid and camid with query
order = indices[q_idx]
if query_camera_id is not None and gallery_camera_id is not None:
remove = (g_pids[order] == q_pid) & (
g_camids[order] == q_camid)
else:
remove = g_pids[order] == q_pid
keep = np.invert(remove)
# compute cmc curve
raw_cmc = matches[q_idx][
keep] # binary vector, positions with value 1 are correct matches
if not np.any(raw_cmc):
# this condition is true when query identity does not appear in gallery
continue
cmc = raw_cmc.cumsum()
pos_idx = np.where(raw_cmc == 1)
max_pos_idx = np.max(pos_idx)
inp = cmc[max_pos_idx] / (max_pos_idx + 1.0)
all_INP.append(inp)
cmc[cmc > 1] = 1
all_cmc.append(cmc[:max_rank])
num_valid_q += 1.
# compute average precision
# reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
num_rel = raw_cmc.sum()
tmp_cmc = raw_cmc.cumsum()
tmp_cmc = [x / (i + 1.) for i, x in enumerate(tmp_cmc)]
tmp_cmc = np.asarray(tmp_cmc) * raw_cmc
AP = tmp_cmc.sum() / num_rel
all_AP.append(AP)
assert num_valid_q > 0, 'Error: all query identities do not appear in gallery'
all_cmc = np.asarray(all_cmc).astype(np.float32)
all_cmc = all_cmc.sum(0) / num_valid_q
mAP = np.mean(all_AP)
mINP = np.mean(all_INP)
logger.info(
"[Eval][Epoch {}]: mAP: {:.5f}, mINP: {:.5f},rank_1: {:.5f}, rank_5: {:.5f}"
.format(epoch_id, mAP, mINP, all_cmc[0], all_cmc[4]))
return mAP
def _cal_feature(self, name='gallery'):
all_feas = None
all_image_id = None
all_camera_id = None
if name == 'gallery':
dataloader = self.gallery_dataloader
elif name == 'query':
dataloader = self.query_dataloader
else:
raise RuntimeError("Only support gallery or query dataset")
has_cam_id = False
for idx, batch in enumerate(dataloader(
)): # load is very time-consuming
batch = [paddle.to_tensor(x) for x in batch]
batch[1] = batch[1].reshape([-1, 1])
if len(batch) == 3:
has_cam_id = True
batch[2] = batch[2].reshape([-1, 1])
out = self.model(batch[0], batch[1])
batch_feas = out["features"]
# do norm
if self.config["Global"].get("feature_normalize", True):
feas_norm = paddle.sqrt(
paddle.sum(paddle.square(batch_feas), axis=1,
keepdim=True))
batch_feas = paddle.divide(batch_feas, feas_norm)
batch_feas = batch_feas
batch_image_labels = batch[1]
if has_cam_id:
batch_camera_labels = batch[2]
if all_feas is None:
all_feas = batch_feas
if has_cam_id:
all_camera_id = batch[2]
all_image_id = batch[1]
else:
all_feas = paddle.concat([all_feas, batch_feas])
all_image_id = paddle.concat([all_image_id, batch[1]])
if has_cam_id:
all_camera_id = paddle.concat([all_camera_id, batch[2]])
if paddle.distributed.get_world_size() > 1:
feat_list = []
img_id_list = []
cam_id_list = []
paddle.distributed.all_gather(feat_list, all_feas)
paddle.distributed.all_gather(img_id_list, all_image_id)
all_feas = paddle.concat(feat_list, axis=0)
all_image_id = paddle.concat(img_id_list, axis=0)
if has_cam_id:
paddle.distributed.all_gather(cam_id_list, all_camera_id)
all_camera_id = paddle.concat(cam_id_list, axis=0)
logger.info("Build {} done, all feat shape: {}, begin to eval..".
format(name, all_feas.shape))
return all_feas, all_image_id, all_camera_id
......@@ -22,9 +22,13 @@ sys.path.append(os.path.abspath(os.path.join(__dir__, '../')))
from ppcls.utils import config
from ppcls.engine.trainer import Trainer
from ppcls.engine.trainer_reid import TrainerReID
if __name__ == "__main__":
args = config.parse_args()
config = config.get_config(args.config, overrides=args.override, show=True)
if "Trainer" in config:
trainer = eval(config["Trainer"]["name"])(config, mode="train")
else:
trainer = Trainer(config, mode="train")
trainer.train()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册