Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
fbb36fd3
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
fbb36fd3
编写于
4月 17, 2020
作者:
littletomatodonkey
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add ssld code
上级
2ee646eb
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
70 addition
and
19 deletion
+70
-19
ppcls/modeling/architectures/__init__.py
ppcls/modeling/architectures/__init__.py
+3
-0
ppcls/modeling/loss.py
ppcls/modeling/loss.py
+32
-3
ppcls/utils/logger.py
ppcls/utils/logger.py
+1
-0
tools/export_model.py
tools/export_model.py
+2
-1
tools/program.py
tools/program.py
+32
-15
未找到文件。
ppcls/modeling/architectures/__init__.py
浏览文件 @
fbb36fd3
...
...
@@ -42,3 +42,6 @@ from .res2net_vd import Res2Net50_vd_48w_2s, Res2Net50_vd_26w_4s, Res2Net50_vd_1
from
.hrnet
import
HRNet_W18_C
,
HRNet_W30_C
,
HRNet_W32_C
,
HRNet_W40_C
,
HRNet_W44_C
,
HRNet_W48_C
,
HRNet_W60_C
,
HRNet_W64_C
,
SE_HRNet_W18_C
,
SE_HRNet_W30_C
,
SE_HRNet_W32_C
,
SE_HRNet_W40_C
,
SE_HRNet_W44_C
,
SE_HRNet_W48_C
,
SE_HRNet_W60_C
,
SE_HRNet_W64_C
from
.darts_gs
import
DARTS_GS_6M
,
DARTS_GS_4M
from
.resnet_acnet
import
ResNet18_ACNet
,
ResNet34_ACNet
,
ResNet50_ACNet
,
ResNet101_ACNet
,
ResNet152_ACNet
# distillation model
from
.distillation_models
import
ResNet50_vd_distill_MobileNetV3_x1_0
,
ResNeXt101_32x16d_wsl_distill_ResNet50_vd
ppcls/modeling/loss.py
浏览文件 @
fbb36fd3
...
...
@@ -15,7 +15,7 @@
import
paddle
import
paddle.fluid
as
fluid
__all__
=
[
'CELoss'
,
'MixCELoss'
,
'GoogLeNetLoss'
]
__all__
=
[
'CELoss'
,
'MixCELoss'
,
'GoogLeNetLoss'
,
'JSDivLoss'
]
class
Loss
(
object
):
...
...
@@ -34,8 +34,11 @@ class Loss(object):
self
.
_label_smoothing
=
False
def
_labelsmoothing
(
self
,
target
):
if
target
.
shape
[
-
1
]
!=
self
.
_class_dim
:
one_hot_target
=
fluid
.
layers
.
one_hot
(
input
=
target
,
depth
=
self
.
_class_dim
)
else
:
one_hot_target
=
target
soft_target
=
fluid
.
layers
.
label_smooth
(
label
=
one_hot_target
,
epsilon
=
self
.
_epsilon
,
dtype
=
"float32"
)
return
soft_target
...
...
@@ -49,6 +52,19 @@ class Loss(object):
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
return
avg_cost
def
_kldiv
(
self
,
input
,
target
):
cost
=
target
*
fluid
.
layers
.
log
(
target
/
input
)
*
self
.
_class_dim
cost
=
fluid
.
layers
.
sum
(
cost
)
return
cost
def
_jsdiv
(
self
,
input
,
target
):
input
=
fluid
.
layers
.
softmax
(
input
,
use_cudnn
=
False
)
target
=
fluid
.
layers
.
softmax
(
target
,
use_cudnn
=
False
)
cost
=
self
.
_kldiv
(
input
,
target
)
+
self
.
_kldiv
(
target
,
input
)
cost
=
cost
/
2
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
return
avg_cost
def
__call__
(
self
,
input
,
target
):
pass
...
...
@@ -97,3 +113,16 @@ class GoogLeNetLoss(Loss):
cost
=
cost0
+
0.3
*
cost1
+
0.3
*
cost2
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
return
avg_cost
class
JSDivLoss
(
Loss
):
"""
JSDiv loss
"""
def
__init__
(
self
,
class_dim
=
1000
,
epsilon
=
None
):
super
(
JSDivLoss
,
self
).
__init__
(
class_dim
,
epsilon
)
def
__call__
(
self
,
input
,
target
):
cost
=
self
.
_jsdiv
(
input
,
target
)
return
cost
ppcls/utils/logger.py
浏览文件 @
fbb36fd3
...
...
@@ -14,6 +14,7 @@
import
os
import
logging
logging
.
basicConfig
()
import
random
DEBUG
=
logging
.
DEBUG
#10
...
...
tools/export_model.py
浏览文件 @
fbb36fd3
...
...
@@ -24,6 +24,7 @@ def parse_args():
parser
.
add_argument
(
"-m"
,
"--model"
,
type
=
str
)
parser
.
add_argument
(
"-p"
,
"--pretrained_model"
,
type
=
str
)
parser
.
add_argument
(
"-o"
,
"--output_path"
,
type
=
str
)
parser
.
add_argument
(
"--class_dim"
,
type
=
int
)
return
parser
.
parse_args
()
...
...
@@ -57,7 +58,7 @@ def main():
with
fluid
.
program_guard
(
infer_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
image
=
create_input
()
out
=
create_model
(
args
,
model
,
image
)
out
=
create_model
(
args
,
model
,
image
,
class_dim
=
args
.
class_dim
)
infer_prog
=
infer_prog
.
clone
(
for_test
=
True
)
fluid
.
load
(
...
...
tools/program.py
浏览文件 @
fbb36fd3
...
...
@@ -31,6 +31,7 @@ from ppcls.optimizer import OptimizerBuilder
from
ppcls.modeling
import
architectures
from
ppcls.modeling.loss
import
CELoss
from
ppcls.modeling.loss
import
MixCELoss
from
ppcls.modeling.loss
import
JSDivLoss
from
ppcls.modeling.loss
import
GoogLeNetLoss
from
ppcls.utils.misc
import
AverageMeter
from
ppcls.utils
import
logger
...
...
@@ -39,13 +40,13 @@ from paddle.fluid.incubate.fleet.collective import fleet
from
paddle.fluid.incubate.fleet.collective
import
DistributedStrategy
def
create_feeds
(
image_shape
,
mix
=
None
):
def
create_feeds
(
image_shape
,
use_
mix
=
None
):
"""
Create feeds as model input
Args:
image_shape(list[int]): model input shape, such as [3, 224, 224]
mix(bool): whether to use mix(include mixup, cutmix, fmix)
use_
mix(bool): whether to use mix(include mixup, cutmix, fmix)
Returns:
feeds(dict): dict of model input variables
...
...
@@ -53,7 +54,7 @@ def create_feeds(image_shape, mix=None):
feeds
=
OrderedDict
()
feeds
[
'image'
]
=
fluid
.
data
(
name
=
"feed_image"
,
shape
=
[
None
]
+
image_shape
,
dtype
=
"float32"
)
if
mix
:
if
use_
mix
:
feeds
[
'feed_y_a'
]
=
fluid
.
data
(
name
=
"feed_y_a"
,
shape
=
[
None
,
1
],
dtype
=
"int64"
)
feeds
[
'feed_y_b'
]
=
fluid
.
data
(
...
...
@@ -112,7 +113,8 @@ def create_loss(out,
architecture
,
classes_num
=
1000
,
epsilon
=
None
,
mix
=
False
):
use_mix
=
False
,
use_distillation
=
False
):
"""
Create a loss for optimization, such as:
1. CrossEnotry loss
...
...
@@ -127,7 +129,7 @@ def create_loss(out,
architecture(dict): architecture information, name(such as ResNet50) is needed
classes_num(int): num of classes
epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
mix(bool): whether to use mix(include mixup, cutmix, fmix)
use_
mix(bool): whether to use mix(include mixup, cutmix, fmix)
Returns:
loss(variable): loss variable
...
...
@@ -138,7 +140,14 @@ def create_loss(out,
target
=
feeds
[
'label'
]
return
loss
(
out
[
0
],
out
[
1
],
out
[
2
],
target
)
if
mix
:
if
use_distillation
:
assert
len
(
out
)
==
2
,
"distillation output length must be 2 but got {}"
.
format
(
len
(
out
))
loss
=
JSDivLoss
(
class_dim
=
classes_num
,
epsilon
=
epsilon
)
return
loss
(
out
[
1
],
out
[
0
])
if
use_mix
:
loss
=
MixCELoss
(
class_dim
=
classes_num
,
epsilon
=
epsilon
)
feed_y_a
=
feeds
[
'feed_y_a'
]
feed_y_b
=
feeds
[
'feed_y_b'
]
...
...
@@ -150,7 +159,8 @@ def create_loss(out,
return
loss
(
out
,
target
)
def
create_metric
(
out
,
feeds
,
topk
=
5
,
classes_num
=
1000
):
def
create_metric
(
out
,
feeds
,
topk
=
5
,
classes_num
=
1000
,
use_distillation
=
False
):
"""
Create measures of model accuracy, such as top1 and top5
...
...
@@ -163,6 +173,9 @@ def create_metric(out, feeds, topk=5, classes_num=1000):
Returns:
fetchs(dict): dict of measures
"""
# just need student label to get metrics
if
use_distillation
:
out
=
out
[
1
]
fetchs
=
OrderedDict
()
label
=
feeds
[
'label'
]
softmax_out
=
fluid
.
layers
.
softmax
(
out
,
use_cudnn
=
False
)
...
...
@@ -182,10 +195,11 @@ def create_fetchs(out,
topk
=
5
,
classes_num
=
1000
,
epsilon
=
None
,
mix
=
False
):
use_mix
=
False
,
use_distillation
=
False
):
"""
Create fetchs as model outputs(included loss and measures),
will call create_loss and create_metric(if mix).
will call create_loss and create_metric(if
use_
mix).
Args:
out(variable): model output variable
...
...
@@ -194,16 +208,17 @@ def create_fetchs(out,
topk(int): usually top5
classes_num(int): num of classes
epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
mix(bool): whether to use mix(include mixup, cutmix, fmix)
use_
mix(bool): whether to use mix(include mixup, cutmix, fmix)
Returns:
fetchs(dict): dict of model outputs(included loss and measures)
"""
fetchs
=
OrderedDict
()
loss
=
create_loss
(
out
,
feeds
,
architecture
,
classes_num
,
epsilon
,
mix
)
loss
=
create_loss
(
out
,
feeds
,
architecture
,
classes_num
,
epsilon
,
use_mix
,
use_distillation
)
fetchs
[
'loss'
]
=
(
loss
,
AverageMeter
(
'loss'
,
':2.4f'
,
True
))
if
not
mix
:
metric
=
create_metric
(
out
,
feeds
,
topk
,
classes_num
)
if
not
use_
mix
:
metric
=
create_metric
(
out
,
feeds
,
topk
,
classes_num
,
use_distillation
)
fetchs
.
update
(
metric
)
return
fetchs
...
...
@@ -293,7 +308,8 @@ def build(config, main_prog, startup_prog, is_train=True):
with
fluid
.
program_guard
(
main_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
use_mix
=
config
.
get
(
'use_mix'
)
and
is_train
feeds
=
create_feeds
(
config
.
image_shape
,
mix
=
use_mix
)
use_distillation
=
config
.
get
(
'use_distillation'
)
feeds
=
create_feeds
(
config
.
image_shape
,
use_mix
=
use_mix
)
dataloader
=
create_dataloader
(
feeds
.
values
())
out
=
create_model
(
config
.
ARCHITECTURE
,
feeds
[
'image'
],
config
.
classes_num
)
...
...
@@ -304,7 +320,8 @@ def build(config, main_prog, startup_prog, is_train=True):
config
.
topk
,
config
.
classes_num
,
epsilon
=
config
.
get
(
'ls_epsilon'
),
mix
=
use_mix
)
use_mix
=
use_mix
,
use_distillation
=
use_distillation
)
if
is_train
:
optimizer
=
create_optimizer
(
config
)
lr
=
optimizer
.
_global_learning_rate
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录