Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
f9f8d032
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f9f8d032
编写于
7月 04, 2020
作者:
W
wqz960
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add feature maps visualization
上级
5d3fe63f
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
248 addition
and
0 deletion
+248
-0
tools/feature_maps_visualization/fm.jpg
tools/feature_maps_visualization/fm.jpg
+0
-0
tools/feature_maps_visualization/fm_vis.py
tools/feature_maps_visualization/fm_vis.py
+99
-0
tools/feature_maps_visualization/get_started.md
tools/feature_maps_visualization/get_started.md
+65
-0
tools/feature_maps_visualization/test.jpg
tools/feature_maps_visualization/test.jpg
+0
-0
tools/feature_maps_visualization/utils.py
tools/feature_maps_visualization/utils.py
+84
-0
未找到文件。
tools/feature_maps_visualization/fm.jpg
0 → 100644
浏览文件 @
f9f8d032
10.5 KB
tools/feature_maps_visualization/fm_vis.py
0 → 100644
浏览文件 @
f9f8d032
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
resnet
import
ResNet50
import
paddle.fluid
as
fluid
import
numpy
as
np
import
cv2
import
utils
import
argparse
import
matplotlib.pyplot
as
plt
def
parse_args
():
def
str2bool
(
v
):
return
v
.
lower
()
in
(
"true"
,
"t"
,
"1"
)
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"-i"
,
"--image_file"
,
type
=
str
)
parser
.
add_argument
(
"-c"
,
"--channel_num"
,
type
=
int
)
parser
.
add_argument
(
"-p"
,
"--pretrained_model"
,
type
=
str
)
parser
.
add_argument
(
"--show"
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
"--save"
,
type
=
str2bool
,
default
=
True
)
parser
.
add_argument
(
"--save_path"
,
type
=
str
)
parser
.
add_argument
(
"--use_gpu"
,
type
=
str2bool
,
default
=
True
)
return
parser
.
parse_args
()
def
create_operators
():
size
=
224
img_mean
=
[
0.485
,
0.456
,
0.406
]
img_std
=
[
0.229
,
0.224
,
0.225
]
img_scale
=
1.0
/
255.0
decode_op
=
utils
.
DecodeImage
()
resize_op
=
utils
.
ResizeImage
(
resize_short
=
256
)
crop_op
=
utils
.
CropImage
(
size
=
(
size
,
size
))
normalize_op
=
utils
.
NormalizeImage
(
scale
=
img_scale
,
mean
=
img_mean
,
std
=
img_std
)
totensor_op
=
utils
.
ToTensor
()
return
[
decode_op
,
resize_op
,
crop_op
,
normalize_op
,
totensor_op
]
def
preprocess
(
fname
,
ops
):
data
=
open
(
fname
,
'rb'
).
read
()
for
op
in
ops
:
data
=
op
(
data
)
return
data
def
main
():
args
=
parse_args
()
operators
=
create_operators
()
# assign the place
if
args
.
use_gpu
:
gpu_id
=
fluid
.
dygraph
.
parallel
.
Env
().
dev_id
place
=
fluid
.
CUDAPlace
(
gpu_id
)
else
:
place
=
fluid
.
CPUPlace
()
fm
=
None
print
(
args
.
pretrained_model
)
pre_weights_dict
=
fluid
.
load_program_state
(
args
.
pretrained_model
)
with
fluid
.
dygraph
.
guard
(
place
):
net
=
ResNet50
()
data
=
preprocess
(
args
.
image_file
,
operators
)
data
=
np
.
expand_dims
(
data
,
axis
=
0
)
data
=
fluid
.
dygraph
.
to_variable
(
data
)
dy_weights_dict
=
net
.
state_dict
()
pre_weights_dict_new
=
{}
for
key
in
dy_weights_dict
:
weights_name
=
dy_weights_dict
[
key
].
name
pre_weights_dict_new
[
key
]
=
pre_weights_dict
[
weights_name
]
net
.
set_dict
(
pre_weights_dict_new
)
net
.
eval
()
_
,
fm
=
net
(
data
)
assert
args
.
channel_num
>=
0
and
args
.
channel_num
<=
fm
.
shape
[
1
],
"the channel is out of the range"
fm
=
(
np
.
squeeze
(
fm
[
0
][
args
.
channel_num
].
numpy
())
*
255
).
astype
(
np
.
uint8
)
print
(
fm
)
if
fm
is
not
None
:
if
args
.
save
:
print
(
args
.
save_path
)
cv2
.
imwrite
(
args
.
save_path
,
fm
)
if
args
.
show
:
cv2
.
show
(
fm
)
cv2
.
waitKey
(
0
)
if
__name__
==
"__main__"
:
main
()
tools/feature_maps_visualization/get_started.md
0 → 100644
浏览文件 @
f9f8d032
# 特征图可视化指南
## 一、概述
特征图是输入图片在卷积网络中的特征表达,对特征图的研究可以有利于我们对于模型的理解与设计,所以基于动态图我们使用本工具来可视化特征图。
## 二、准备工作
首先我们需要选定研究的模型,本文设定ResNet50作为研究模型,将resnet.py从
[
模型库
](
../../ppcls/modeling/architecture/
)
拷贝到当前目录下,并下载预训练模型
[
预训练模型
](
../../docs/zh_CN/models/models_intro
)
, 复制resnet50的模型链接,使用下列命令下载并解压预训练模型。
```
bash
wget The Link
for
Pretrained Model
tar
-xf
Downloaded Pretrained Model
```
以resnet50为例:
```
bash
wget https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar
tar
-xf
ResNet50_pretrained.tar
```
## 三、修改模型
找到我们所需要的特征图位置,设置self.fm将其fetch出来,本文以resnet50中的stem层之后的特征图为例。
在ResNet50的__init__函数中定义self.fm
```
python
self
.
fm
=
None
```
在ResNet50的forward函数中指定特征图
```
python
def
forward
(
self
,
inputs
):
y
=
self
.
conv
(
inputs
)
self
.
fm
=
y
y
=
self
.
pool2d_max
(
y
)
for
bottleneck_block
in
self
.
bottleneck_block_list
:
y
=
bottleneck_block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
fluid
.
layers
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_output
])
y
=
self
.
out
(
y
)
return
y
,
self
.
fm
```
执行函数
```
bash
python tools/feature_maps_visualization/fm_vis.py
-i
the image you want to
test
\
-c
channel_num
-p
pretrained model
\
--show
whether to show
\
--save
whether to save
\
--save_path
where to save
\
--use_gpu
whether to use gpu
```
参数说明:
+
`-i`
:待预测的图片文件路径,如
`./test.jpeg`
+
`-c`
:特征图维度,如
`./resnet50-vd/model`
+
`-p`
:权重文件路径,如
`./ResNet50_pretrained/`
+
`--show`
:是否展示图片,默认值 False
+
`--save`
:是否保存图片,默认值:True
+
`--save_path`
:保存路径,如:
`./tools/`
+
`--use_gpu`
:是否使用 GPU 预测,默认值:True
## 四、结果
输入图片:
![](
../../tools/feature_maps_visualization/test.jpg
)
输出特征图:
![](
../../tools/feature_maps_visualization/fm.jpg
)
\ No newline at end of file
tools/feature_maps_visualization/test.jpg
0 → 100644
浏览文件 @
f9f8d032
30.5 KB
tools/feature_maps_visualization/utils.py
0 → 100644
浏览文件 @
f9f8d032
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
cv2
import
numpy
as
np
class
DecodeImage
(
object
):
def
__init__
(
self
,
to_rgb
=
True
):
self
.
to_rgb
=
to_rgb
def
__call__
(
self
,
img
):
data
=
np
.
frombuffer
(
img
,
dtype
=
'uint8'
)
img
=
cv2
.
imdecode
(
data
,
1
)
if
self
.
to_rgb
:
assert
img
.
shape
[
2
]
==
3
,
'invalid shape of image[%s]'
%
(
img
.
shape
)
img
=
img
[:,
:,
::
-
1
]
return
img
class
ResizeImage
(
object
):
def
__init__
(
self
,
resize_short
=
None
):
self
.
resize_short
=
resize_short
def
__call__
(
self
,
img
):
img_h
,
img_w
=
img
.
shape
[:
2
]
percent
=
float
(
self
.
resize_short
)
/
min
(
img_w
,
img_h
)
w
=
int
(
round
(
img_w
*
percent
))
h
=
int
(
round
(
img_h
*
percent
))
return
cv2
.
resize
(
img
,
(
w
,
h
))
class
CropImage
(
object
):
def
__init__
(
self
,
size
):
if
type
(
size
)
is
int
:
self
.
size
=
(
size
,
size
)
else
:
self
.
size
=
size
def
__call__
(
self
,
img
):
w
,
h
=
self
.
size
img_h
,
img_w
=
img
.
shape
[:
2
]
w_start
=
(
img_w
-
w
)
//
2
h_start
=
(
img_h
-
h
)
//
2
w_end
=
w_start
+
w
h_end
=
h_start
+
h
return
img
[
h_start
:
h_end
,
w_start
:
w_end
,
:]
class
NormalizeImage
(
object
):
def
__init__
(
self
,
scale
=
None
,
mean
=
None
,
std
=
None
):
self
.
scale
=
np
.
float32
(
scale
if
scale
is
not
None
else
1.0
/
255.0
)
mean
=
mean
if
mean
is
not
None
else
[
0.485
,
0.456
,
0.406
]
std
=
std
if
std
is
not
None
else
[
0.229
,
0.224
,
0.225
]
shape
=
(
1
,
1
,
3
)
self
.
mean
=
np
.
array
(
mean
).
reshape
(
shape
).
astype
(
'float32'
)
self
.
std
=
np
.
array
(
std
).
reshape
(
shape
).
astype
(
'float32'
)
def
__call__
(
self
,
img
):
return
(
img
.
astype
(
'float32'
)
*
self
.
scale
-
self
.
mean
)
/
self
.
std
class
ToTensor
(
object
):
def
__init__
(
self
):
pass
def
__call__
(
self
,
img
):
img
=
img
.
transpose
((
2
,
0
,
1
))
return
img
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录