diff --git a/docs/zh_CN/quick_start/quick_start_multilabel_classification.md b/docs/zh_CN/quick_start/quick_start_multilabel_classification.md
new file mode 100644
index 0000000000000000000000000000000000000000..b5b539db8cc7cd103e1b47db4aca45567447bcd1
--- /dev/null
+++ b/docs/zh_CN/quick_start/quick_start_multilabel_classification.md
@@ -0,0 +1,108 @@
+# 多标签分类quick start
+
+基于[NUS-WIDE-SCENE](https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.html)数据集,体验多标签分类的训练、评估、预测的过程,该数据集是NUS-WIDE数据集的一个子集。请首先安装PaddlePaddle和PaddleClas,具体安装步骤可详看[Paddle 安装文档](../installation/install_paddle.md),[PaddleClas 安装文档](../installation/install_paddleclas.md)。
+
+
+## 目录
+
+* [数据和模型准备](#1)
+* [模型训练](#2)
+* [模型评估](#3)
+* [模型预测](#4)
+* [基于预测引擎预测](#5)
+ * [5.1 导出inference model](#5.1)
+ * [5.2 基于预测引擎预测](#5.2)
+
+
+## 一、数据和模型准备
+
+* 进入PaddleClas目录。
+
+```
+cd path_to_PaddleClas
+```
+
+* 创建并进入`dataset/NUS-WIDE-SCENE`目录,下载并解压NUS-WIDE-SCENE数据集。
+
+```shell
+mkdir dataset/NUS-WIDE-SCENE
+cd dataset/NUS-WIDE-SCENE
+wget https://paddle-imagenet-models-name.bj.bcebos.com/data/NUS-SCENE-dataset.tar
+tar -xf NUS-SCENE-dataset.tar
+```
+
+* 返回`PaddleClas`根目录
+
+```
+cd ../../
+```
+
+
+## 二、模型训练
+
+```shell
+export CUDA_VISIBLE_DEVICES=0,1,2,3
+python3 -m paddle.distributed.launch \
+ --gpus="0,1,2,3" \
+ tools/train.py \
+ -c ./ppcls/configs/quick_start/professional/MobileNetV1_multilabel.yaml
+```
+
+训练10epoch之后,验证集最好的正确率应该在0.95左右。
+
+
+## 三、模型评估
+
+```bash
+python3 tools/eval.py \
+ -c ./ppcls/configs/quick_start/professional/MobileNetV1_multilabel.yaml \
+ -o Arch.pretrained="./output/MobileNetV1/best_model"
+```
+
+
+## 四、模型预测
+
+```bash
+python3 tools/infer.py \
+ -c ./ppcls/configs/quick_start/professional/MobileNetV1_multilabel.yaml \
+ -o Arch.pretrained="./output/MobileNetV1/best_model"
+```
+
+得到类似下面的输出:
+```
+[{'class_ids': [6, 13, 17, 23, 26, 30], 'scores': [0.95683, 0.5567, 0.55211, 0.99088, 0.5943, 0.78767], 'file_name': './deploy/images/0517_2715693311.jpg', 'label_names': []}]
+```
+
+
+## 五、基于预测引擎预测
+
+
+### 5.1 导出inference model
+
+```bash
+python3 tools/export_model.py \
+ -c ./ppcls/configs/quick_start/professional/MobileNetV1_multilabel.yaml \
+ -o Arch.pretrained="./output/MobileNetV1/best_model"
+```
+inference model的路径默认在当前路径下`./inference`
+
+
+### 5.2 基于预测引擎预测
+
+首先进入deploy目录下:
+
+```bash
+cd ./deploy
+```
+
+通过预测引擎推理预测:
+
+```
+python3 python/predict_cls.py \
+ -c configs/inference_multilabel_cls.yaml
+```
+
+得到类似下面的输出:
+```
+0517_2715693311.jpg: class id(s): [6, 13, 17, 23, 26, 30], score(s): [0.96, 0.56, 0.55, 0.99, 0.59, 0.79], label_name(s): []
+```
diff --git a/docs/zh_CN/quick_start/quick_start_recognition.md b/docs/zh_CN/quick_start/quick_start_recognition.md
index 77a7a95e1042b7caf3fea2bd9edbbd5d1c686223..863f447cf6332c1840083a67056c1a6b0a129cdf 100644
--- a/docs/zh_CN/quick_start/quick_start_recognition.md
+++ b/docs/zh_CN/quick_start/quick_start_recognition.md
@@ -74,8 +74,7 @@ cd ..
wget {数据下载链接地址} && tar -xf {压缩包的名称}
```
-
-
+
### 2.1 下载、解压 inference 模型与 demo 数据
下载 demo 数据集以及轻量级主体检测、识别模型,命令如下。