diff --git a/deploy/hubserving/readme.md b/deploy/hubserving/readme.md
index 6b2b2dd4dd703965f52fa7d16cd6be41672186a9..8506c9e4144b4792a06ff36de6c0f6d4698b40cf 100644
--- a/deploy/hubserving/readme.md
+++ b/deploy/hubserving/readme.md
@@ -1,83 +1,117 @@
-[English](readme_en.md) | 简体中文
+简体中文 | [English](readme_en.md)
-# 基于PaddleHub Serving的服务部署
+# 基于 PaddleHub Serving 的服务部署
-hubserving服务部署配置服务包`clas`下包含3个必选文件,目录如下:
-```
-hubserving/clas/
- └─ __init__.py 空文件,必选
- └─ config.json 配置文件,可选,使用配置启动服务时作为参数传入
- └─ module.py 主模块,必选,包含服务的完整逻辑
- └─ params.py 参数文件,必选,包含模型路径、前后处理参数等参数
+PaddleClas 支持通过 PaddleHub 快速进行服务化部署。目前支持图像分类的部署,图像识别的部署敬请期待。
+
+
+## 目录
+- [1. 简介](#1-简介)
+- [2. 准备环境](#2-准备环境)
+- [3. 下载推理模型](#3-下载推理模型)
+- [4. 安装服务模块](#4-安装服务模块)
+- [5. 启动服务](#5-启动服务)
+ - [5.1 命令行启动](#51-命令行启动)
+ - [5.2 配置文件启动](#52-配置文件启动)
+- [6. 发送预测请求](#6-发送预测请求)
+- [7. 自定义修改服务模块](#7-自定义修改服务模块)
+
+
+
+## 1. 简介
+
+hubserving 服务部署配置服务包 `clas` 下包含 3 个必选文件,目录如下:
+
+```shell
+deploy/hubserving/clas/
+├── __init__.py # 空文件,必选
+├── config.json # 配置文件,可选,使用配置启动服务时作为参数传入
+├── module.py # 主模块,必选,包含服务的完整逻辑
+└── params.py # 参数文件,必选,包含模型路径、前后处理参数等参数
```
-## 快速启动服务
-### 1. 准备环境
+
+
+## 2. 准备环境
```shell
-# 安装paddlehub,请安装2.0版本
-pip3 install paddlehub==2.1.0 --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple
+# 安装 paddlehub,建议安装 2.1.0 版本
+python3.7 -m pip install paddlehub==2.1.0 --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple
```
-### 2. 下载推理模型
+
+
+## 3. 下载推理模型
+
安装服务模块前,需要准备推理模型并放到正确路径,默认模型路径为:
-```
-分类推理模型结构文件:PaddleClas/inference/inference.pdmodel
-分类推理模型权重文件:PaddleClas/inference/inference.pdiparams
-```
+
+* 分类推理模型结构文件:`PaddleClas/inference/inference.pdmodel`
+* 分类推理模型权重文件:`PaddleClas/inference/inference.pdiparams`
**注意**:
-* 模型文件路径可在`PaddleClas/deploy/hubserving/clas/params.py`中查看和修改:
+* 模型文件路径可在 `PaddleClas/deploy/hubserving/clas/params.py` 中查看和修改:
+
```python
"inference_model_dir": "../inference/"
```
- 需要注意,模型文件(包括.pdmodel与.pdiparams)名称必须为`inference`。
-* 我们也提供了大量基于ImageNet-1k数据集的预训练模型,模型列表及下载地址详见[模型库概览](../../docs/zh_CN/models/models_intro.md),也可以使用自己训练转换好的模型。
+* 模型文件(包括 `.pdmodel` 与 `.pdiparams`)的名称必须为 `inference`。
+* 我们提供了大量基于 ImageNet-1k 数据集的预训练模型,模型列表及下载地址详见[模型库概览](../../docs/zh_CN/algorithm_introduction/ImageNet_models.md),也可以使用自己训练转换好的模型。
-### 3. 安装服务模块
-针对Linux环境和Windows环境,安装命令如下。
-* 在Linux环境下,安装示例如下:
-```shell
-cd PaddleClas/deploy
-# 安装服务模块:
-hub install hubserving/clas/
-```
+
+## 4. 安装服务模块
+
+* 在 Linux 环境下,安装示例如下:
+ ```shell
+ cd PaddleClas/deploy
+ # 安装服务模块:
+ hub install hubserving/clas/
+ ```
+
+* 在 Windows 环境下(文件夹的分隔符为`\`),安装示例如下:
+
+ ```shell
+ cd PaddleClas\deploy
+ # 安装服务模块:
+ hub install hubserving\clas\
+ ```
+
-* 在Windows环境下(文件夹的分隔符为`\`),安装示例如下:
+
+## 5. 启动服务
+
+
+
+### 5.1 命令行启动
+
+该方式仅支持使用 CPU 预测。启动命令:
```shell
-cd PaddleClas\deploy
-# 安装服务模块:
-hub install hubserving\clas\
+hub serving start \
+--modules clas_system
+--port 8866
```
+这样就完成了一个服务化 API 的部署,使用默认端口号 8866。
-### 4. 启动服务
-#### 方式1. 命令行命令启动(仅支持CPU)
-**启动命令:**
-```shell
-$ hub serving start --modules Module1==Version1 \
- --port XXXX \
- --use_multiprocess \
- --workers \
-```
+**参数说明**:
+| 参数 | 用途 |
+| ------------------ | ----------------------------------------------------------------------------------------------------------------------------- |
+| --modules/-m | [**必选**] PaddleHub Serving 预安装模型,以多个 Module==Version 键值对的形式列出
*`当不指定 Version 时,默认选择最新版本`* |
+| --port/-p | [**可选**] 服务端口,默认为 8866 |
+| --use_multiprocess | [**可选**] 是否启用并发方式,默认为单进程方式,推荐多核 CPU 机器使用此方式
*`Windows 操作系统只支持单进程方式`* |
+| --workers | [**可选**] 在并发方式下指定的并发任务数,默认为 `2*cpu_count-1`,其中 `cpu_count` 为 CPU 核数 |
+更多部署细节详见 [PaddleHub Serving模型一键服务部署](https://paddlehub.readthedocs.io/zh_CN/release-v2.1/tutorial/serving.html)
-**参数:**
-|参数|用途|
-|-|-|
-|--modules/-m| [**必选**] PaddleHub Serving预安装模型,以多个Module==Version键值对的形式列出
*`当不指定Version时,默认选择最新版本`*|
-|--port/-p| [**可选**] 服务端口,默认为8866|
-|--use_multiprocess| [**可选**] 是否启用并发方式,默认为单进程方式,推荐多核CPU机器使用此方式
*`Windows操作系统只支持单进程方式`*|
-|--workers| [**可选**] 在并发方式下指定的并发任务数,默认为`2*cpu_count-1`,其中`cpu_count`为CPU核数|
+
+### 5.2 配置文件启动
-如按默认参数启动服务: ```hub serving start -m clas_system```
+该方式仅支持使用 CPU 或 GPU 预测。启动命令:
-这样就完成了一个服务化API的部署,使用默认端口号8866。
+```shell
+hub serving start -c config.json
+```
-#### 方式2. 配置文件启动(支持CPU、GPU)
-**启动命令:**
-```hub serving start -c config.json```
+其中,`config.json` 格式如下:
-其中,`config.json`格式如下:
```json
{
"modules_info": {
@@ -97,92 +131,109 @@ $ hub serving start --modules Module1==Version1 \
}
```
-- `init_args`中的可配参数与`module.py`中的`_initialize`函数接口一致。其中,
- - 当`use_gpu`为`true`时,表示使用GPU启动服务。
- - 当`enable_mkldnn`为`true`时,表示使用MKL-DNN加速。
-- `predict_args`中的可配参数与`module.py`中的`predict`函数接口一致。
+**参数说明**:
+* `init_args` 中的可配参数与 `module.py` 中的 `_initialize` 函数接口一致。其中,
+ - 当 `use_gpu` 为 `true` 时,表示使用 GPU 启动服务。
+ - 当 `enable_mkldnn` 为 `true` 时,表示使用 MKL-DNN 加速。
+* `predict_args` 中的可配参数与 `module.py` 中的 `predict` 函数接口一致。
-**注意:**
-- 使用配置文件启动服务时,其他参数会被忽略。
-- 如果使用GPU预测(即,`use_gpu`置为`true`),则需要在启动服务之前,设置CUDA_VISIBLE_DEVICES环境变量,如:```export CUDA_VISIBLE_DEVICES=0```,否则不用设置。
-- **`use_gpu`不可与`use_multiprocess`同时为`true`**。
-- **`use_gpu`与`enable_mkldnn`同时为`true`时,将忽略`enable_mkldnn`,而使用GPU**。
+**注意**:
+* 使用配置文件启动服务时,将使用配置文件中的参数设置,其他命令行参数将被忽略;
+* 如果使用 GPU 预测(即,`use_gpu` 置为 `true`),则需要在启动服务之前,设置 `CUDA_VISIBLE_DEVICES` 环境变量来指定所使用的 GPU 卡号,如:`export CUDA_VISIBLE_DEVICES=0`;
+* **`use_gpu` 不可与 `use_multiprocess` 同时为 `true`**;
+* **`use_gpu` 与 `enable_mkldnn` 同时为 `true` 时,将忽略 `enable_mkldnn`,而使用 GPU**。
+
+如使用 GPU 3 号卡启动服务:
-如,使用GPU 3号卡启动串联服务:
```shell
cd PaddleClas/deploy
export CUDA_VISIBLE_DEVICES=3
hub serving start -c hubserving/clas/config.json
-```
+```
-## 发送预测请求
-配置好服务端,可使用以下命令发送预测请求,获取预测结果:
+
+## 6. 发送预测请求
+
+配置好服务端后,可使用以下命令发送预测请求,获取预测结果:
```shell
cd PaddleClas/deploy
-python hubserving/test_hubserving.py server_url image_path
-```
-
-需要给脚本传递2个必须参数:
-- **server_url**:服务地址,格式为
-`http://[ip_address]:[port]/predict/[module_name]`
-- **image_path**:测试图像路径,可以是单张图片路径,也可以是图像集合目录路径。
-- **batch_size**:[**可选**] 以`batch_size`大小为单位进行预测,默认为`1`。
-- **resize_short**:[**可选**] 预处理时,按短边调整大小,默认为`256`。
-- **crop_size**:[**可选**] 预处理时,居中裁剪的大小,默认为`224`。
-- **normalize**:[**可选**] 预处理时,是否进行`normalize`,默认为`True`。
-- **to_chw**:[**可选**] 预处理时,是否调整为`CHW`顺序,默认为`True`。
+python3.7 hubserving/test_hubserving.py \
+--server_url http://127.0.0.1:8866/predict/clas_system \
+--image_file ./hubserving/ILSVRC2012_val_00006666.JPEG \
+--batch_size 8
+```
+**预测输出**
+```log
+The result(s): class_ids: [57, 67, 68, 58, 65], label_names: ['garter snake, grass snake', 'diamondback, diamondback rattlesnake, Crotalus adamanteus', 'sidewinder, horned rattlesnake, Crotalus cerastes', 'water snake', 'sea snake'], scores: [0.21915, 0.15631, 0.14794, 0.13177, 0.12285]
+The average time of prediction cost: 2.970 s/image
+The average time cost: 3.014 s/image
+The average top-1 score: 0.110
+```
-**注意**:如果使用`Transformer`系列模型,如`DeiT_***_384`, `ViT_***_384`等,请注意模型的输入数据尺寸,需要指定`--resize_short=384 --crop_size=384`。
+**脚本参数说明**:
+* **server_url**:服务地址,格式为`http://[ip_address]:[port]/predict/[module_name]`。
+* **image_path**:测试图像路径,可以是单张图片路径,也可以是图像集合目录路径。
+* **batch_size**:[**可选**] 以 `batch_size` 大小为单位进行预测,默认为 `1`。
+* **resize_short**:[**可选**] 预处理时,按短边调整大小,默认为 `256`。
+* **crop_size**:[**可选**] 预处理时,居中裁剪的大小,默认为 `224`。
+* **normalize**:[**可选**] 预处理时,是否进行 `normalize`,默认为 `True`。
+* **to_chw**:[**可选**] 预处理时,是否调整为 `CHW` 顺序,默认为 `True`。
+**注意**:如果使用 `Transformer` 系列模型,如 `DeiT_***_384`, `ViT_***_384` 等,请注意模型的输入数据尺寸,需要指定`--resize_short=384 --crop_size=384`。
-访问示例:
+**返回结果格式说明**:
+返回结果为列表(list),包含 top-k 个分类结果,以及对应的得分,还有此图片预测耗时,具体如下:
```shell
-python hubserving/test_hubserving.py --server_url http://127.0.0.1:8866/predict/clas_system --image_file ./hubserving/ILSVRC2012_val_00006666.JPEG --batch_size 8
-```
-
-### 返回结果格式说明
-返回结果为列表(list),包含top-k个分类结果,以及对应的得分,还有此图片预测耗时,具体如下:
-```
list: 返回结果
-└─ list: 第一张图片结果
- └─ list: 前k个分类结果,依score递减排序
- └─ list: 前k个分类结果对应的score,依score递减排序
- └─ float: 该图分类耗时,单位秒
+└──list: 第一张图片结果
+ ├── list: 前 k 个分类结果,依 score 递减排序
+ ├── list: 前 k 个分类结果对应的 score,依 score 递减排序
+ └── float: 该图分类耗时,单位秒
```
-**说明:** 如果需要增加、删除、修改返回字段,可对相应模块进行修改,完整流程参考下一节自定义修改服务模块。
-## 自定义修改服务模块
-如果需要修改服务逻辑,你一般需要操作以下步骤:
-- 1、 停止服务
-```hub serving stop --port/-p XXXX```
+
+## 7. 自定义修改服务模块
-- 2、 到相应的`module.py`和`params.py`等文件中根据实际需求修改代码。`module.py`修改后需要重新安装(`hub install hubserving/clas/`)并部署。在进行部署前,可通过`python hubserving/clas/module.py`测试已安装服务模块。
+如果需要修改服务逻辑,需要进行以下操作:
-- 3、 卸载旧服务包
-```hub uninstall clas_system```
+1. 停止服务
+ ```shell
+ hub serving stop --port/-p XXXX
+ ```
-- 4、 安装修改后的新服务包
-```hub install hubserving/clas/```
+2. 到相应的 `module.py` 和 `params.py` 等文件中根据实际需求修改代码。`module.py` 修改后需要重新安装(`hub install hubserving/clas/`)并部署。在进行部署前,可先通过 `python3.7 hubserving/clas/module.py` 命令来快速测试准备部署的代码。
-- 5、重新启动服务
-```hub serving start -m clas_system```
+3. 卸载旧服务包
+ ```shell
+ hub uninstall clas_system
+ ```
+
+4. 安装修改后的新服务包
+ ```shell
+ hub install hubserving/clas/
+ ```
+
+5. 重新启动服务
+ ```shell
+ hub serving start -m clas_system
+ ```
**注意**:
-常用参数可在[params.py](./clas/params.py)中修改:
+常用参数可在 `PaddleClas/deploy/hubserving/clas/params.py` 中修改:
* 更换模型,需要修改模型文件路径参数:
```python
"inference_model_dir":
```
- * 更改后处理时返回的`top-k`结果数量:
+ * 更改后处理时返回的 `top-k` 结果数量:
```python
'topk':
```
- * 更改后处理时的lable与class id对应映射文件:
+ * 更改后处理时的 lable 与 class id 对应映射文件:
```python
'class_id_map_file':
```
-为了避免不必要的延时以及能够以batch_size进行预测,数据预处理逻辑(包括resize、crop等操作)在客户端完成,因此需要在[test_hubserving.py](./test_hubserving.py#L35-L52)中修改。
+为了避免不必要的延时以及能够以 batch_size 进行预测,数据预处理逻辑(包括 `resize`、`crop` 等操作)均在客户端完成,因此需要在 [PaddleClas/deploy/hubserving/test_hubserving.py#L41-L47](./test_hubserving.py#L41-L47) 以及 [PaddleClas/deploy/hubserving/test_hubserving.py#L51-L76](./test_hubserving.py#L51-L76) 中修改数据预处理逻辑相关代码。
diff --git a/deploy/hubserving/readme_en.md b/deploy/hubserving/readme_en.md
index bb0ddbd2c3a994b164d8781767b8de38d484b420..6dce5cc52cc32ef41b8f18d5eb772cc44a1661ad 100644
--- a/deploy/hubserving/readme_en.md
+++ b/deploy/hubserving/readme_en.md
@@ -1,83 +1,116 @@
English | [简体中文](readme.md)
-# Service deployment based on PaddleHub Serving
+# Service deployment based on PaddleHub Serving
+
+PaddleClas supports rapid service deployment through PaddleHub. Currently, the deployment of image classification is supported. Please look forward to the deployment of image recognition.
+
+## Catalogue
+- [1 Introduction](#1-introduction)
+- [2. Prepare the environment](#2-prepare-the-environment)
+- [3. Download the inference model](#3-download-the-inference-model)
+- [4. Install the service module](#4-install-the-service-module)
+- [5. Start service](#5-start-service)
+ - [5.1 Start with command line parameters](#51-start-with-command-line-parameters)
+ - [5.2 Start with configuration file](#52-start-with-configuration-file)
+- [6. Send prediction requests](#6-send-prediction-requests)
+- [7. User defined service module modification](#7-user-defined-service-module-modification)
-HubServing service pack contains 3 files, the directory is as follows:
-```
-hubserving/clas/
- └─ __init__.py Empty file, required
- └─ config.json Configuration file, optional, passed in as a parameter when using configuration to start the service
- └─ module.py Main module file, required, contains the complete logic of the service
- └─ params.py Parameter file, required, including parameters such as model path, pre- and post-processing parameters
-```
-## Quick start service
-### 1. Prepare the environment
+
+## 1 Introduction
+
+The hubserving service deployment configuration service package `clas` contains 3 required files, the directories are as follows:
+
```shell
-# Install version 2.0 of PaddleHub
-pip3 install paddlehub==2.1.0 --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple
+deploy/hubserving/clas/
+├── __init__.py # Empty file, required
+├── config.json # Configuration file, optional, passed in as a parameter when starting the service with configuration
+├── module.py # The main module, required, contains the complete logic of the service
+└── params.py # Parameter file, required, including model path, pre- and post-processing parameters and other parameters
```
-### 2. Download inference model
-Before installing the service module, you need to prepare the inference model and put it in the correct path. The default model path is:
-```
-Model structure file: PaddleClas/inference/inference.pdmodel
-Model parameters file: PaddleClas/inference/inference.pdiparams
+
+## 2. Prepare the environment
+```shell
+# Install paddlehub, version 2.1.0 is recommended
+python3.7 -m pip install paddlehub==2.1.0 --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple
```
-* The model file path can be viewed and modified in `PaddleClas/deploy/hubserving/clas/params.py`.
- It should be noted that the prefix of model structure file and model parameters file must be `inference`.
+
+## 3. Download the inference model
-* More models provided by PaddleClas can be obtained from the [model library](../../docs/en/models/models_intro_en.md). You can also use models trained by yourself.
+Before installing the service module, you need to prepare the inference model and put it in the correct path. The default model path is:
-### 3. Install Service Module
+* Classification inference model structure file: `PaddleClas/inference/inference.pdmodel`
+* Classification inference model weight file: `PaddleClas/inference/inference.pdiparams`
-* On Linux platform, the examples are as follows.
-```shell
-cd PaddleClas/deploy
-hub install hubserving/clas/
-```
+**Notice**:
+* Model file paths can be viewed and modified in `PaddleClas/deploy/hubserving/clas/params.py`:
+
+ ```python
+ "inference_model_dir": "../inference/"
+ ```
+* Model files (including `.pdmodel` and `.pdiparams`) must be named `inference`.
+* We provide a large number of pre-trained models based on the ImageNet-1k dataset. For the model list and download address, see [Model Library Overview](../../docs/en/algorithm_introduction/ImageNet_models_en.md), or you can use your own trained and converted models.
+
+
+
+## 4. Install the service module
+
+* In the Linux environment, the installation example is as follows:
+ ```shell
+ cd PaddleClas/deploy
+ # Install the service module:
+ hub install hubserving/clas/
+ ```
+
+* In the Windows environment (the folder separator is `\`), the installation example is as follows:
+
+ ```shell
+ cd PaddleClas\deploy
+ # Install the service module:
+ hub install hubserving\clas\
+ ```
+
+
+
+## 5. Start service
+
+
+
+### 5.1 Start with command line parameters
+
+This method only supports prediction using CPU. Start command:
-* On Windows platform, the examples are as follows.
```shell
-cd PaddleClas\deploy
-hub install hubserving\clas\
+hub serving start \
+--modules clas_system
+--port 8866
```
+This completes the deployment of a serviced API, using the default port number 8866.
-### 4. Start service
-#### Way 1. Start with command line parameters (CPU only)
+**Parameter Description**:
+| parameters | uses |
+| ------------------ | ------------------- |
+| --modules/-m | [**required**] PaddleHub Serving pre-installed model, listed in the form of multiple Module==Version key-value pairs
*`When no Version is specified, the latest is selected by default version`* |
+| --port/-p | [**OPTIONAL**] Service port, default is 8866 |
+| --use_multiprocess | [**Optional**] Whether to enable the concurrent mode, the default is single-process mode, it is recommended to use this mode for multi-core CPU machines
*`Windows operating system only supports single-process mode`* |
+| --workers | [**Optional**] The number of concurrent tasks specified in concurrent mode, the default is `2*cpu_count-1`, where `cpu_count` is the number of CPU cores |
+For more deployment details, see [PaddleHub Serving Model One-Click Service Deployment](https://paddlehub.readthedocs.io/zh_CN/release-v2.1/tutorial/serving.html)
-**start command:**
-```shell
-$ hub serving start --modules Module1==Version1 \
- --port XXXX \
- --use_multiprocess \
- --workers \
-```
-**parameters:**
-
-|parameters|usage|
-|-|-|
-|--modules/-m|PaddleHub Serving pre-installed model, listed in the form of multiple Module==Version key-value pairs
*`When Version is not specified, the latest version is selected by default`*|
-|--port/-p|Service port, default is 8866|
-|--use_multiprocess|Enable concurrent mode, the default is single-process mode, this mode is recommended for multi-core CPU machines
*`Windows operating system only supports single-process mode`*|
-|--workers|The number of concurrent tasks specified in concurrent mode, the default is `2*cpu_count-1`, where `cpu_count` is the number of CPU cores|
-
-For example, start the 2-stage series service:
-```shell
-hub serving start -m clas_system
-```
+
+### 5.2 Start with configuration file
-This completes the deployment of a service API, using the default port number 8866.
+This method only supports prediction using CPU or GPU. Start command:
-#### Way 2. Start with configuration file(CPU、GPU)
-**start command:**
```shell
-hub serving start --config/-c config.json
-```
-Wherein, the format of `config.json` is as follows:
+hub serving start -c config.json
+```
+
+Among them, the format of `config.json` is as follows:
+
```json
{
"modules_info": {
@@ -96,104 +129,110 @@ Wherein, the format of `config.json` is as follows:
"workers": 2
}
```
-- The configurable parameters in `init_args` are consistent with the `_initialize` function interface in `module.py`. Among them,
- - when `use_gpu` is `true`, it means that the GPU is used to start the service.
- - when `enable_mkldnn` is `true`, it means that use MKL-DNN to accelerate.
-- The configurable parameters in `predict_args` are consistent with the `predict` function interface in `module.py`.
-
-**Note:**
-- When using the configuration file to start the service, other parameters will be ignored.
-- If you use GPU prediction (that is, `use_gpu` is set to `true`), you need to set the environment variable CUDA_VISIBLE_DEVICES before starting the service, such as: ```export CUDA_VISIBLE_DEVICES=0```, otherwise you do not need to set it.
-- **`use_gpu` and `use_multiprocess` cannot be `true` at the same time.**
-- **When both `use_gpu` and `enable_mkldnn` are set to `true` at the same time, GPU is used to run and `enable_mkldnn` will be ignored.**
-
-For example, use GPU card No. 3 to start the 2-stage series service:
+
+**Parameter Description**:
+* The configurable parameters in `init_args` are consistent with the `_initialize` function interface in `module.py`. in,
+ - When `use_gpu` is `true`, it means to use GPU to start the service.
+ - When `enable_mkldnn` is `true`, it means to use MKL-DNN acceleration.
+* The configurable parameters in `predict_args` are consistent with the `predict` function interface in `module.py`.
+
+**Notice**:
+* When using the configuration file to start the service, the parameter settings in the configuration file will be used, and other command line parameters will be ignored;
+* If you use GPU prediction (ie, `use_gpu` is set to `true`), you need to set the `CUDA_VISIBLE_DEVICES` environment variable to specify the GPU card number used before starting the service, such as: `export CUDA_VISIBLE_DEVICES=0`;
+* **`use_gpu` cannot be `true`** at the same time as `use_multiprocess`;
+* ** When both `use_gpu` and `enable_mkldnn` are `true`, `enable_mkldnn` will be ignored and GPU** will be used.
+
+If you use GPU No. 3 card to start the service:
+
```shell
cd PaddleClas/deploy
export CUDA_VISIBLE_DEVICES=3
hub serving start -c hubserving/clas/config.json
-```
-
-## Send prediction requests
-After the service starts, you can use the following command to send a prediction request to obtain the prediction result:
-```shell
-cd PaddleClas/deploy
-python hubserving/test_hubserving.py server_url image_path
```
-Two required parameters need to be passed to the script:
-- **server_url**: service address,format of which is
-`http://[ip_address]:[port]/predict/[module_name]`
-- **image_path**: Test image path, can be a single image path or an image directory path
-- **batch_size**: [**Optional**] batch_size. Default by `1`.
-- **resize_short**: [**Optional**] In preprocessing, resize according to short size. Default by `256`。
-- **crop_size**: [**Optional**] In preprocessing, centor crop size. Default by `224`。
-- **normalize**: [**Optional**] In preprocessing, whether to do `normalize`. Default by `True`。
-- **to_chw**: [**Optional**] In preprocessing, whether to transpose to `CHW`. Default by `True`。
+
+## 6. Send prediction requests
-**Notice**:
-If you want to use `Transformer series models`, such as `DeiT_***_384`, `ViT_***_384`, etc., please pay attention to the input size of model, and need to set `--resize_short=384`, `--crop_size=384`.
+After configuring the server, you can use the following command to send a prediction request to get the prediction result:
-**Eg.**
```shell
-python hubserving/test_hubserving.py --server_url http://127.0.0.1:8866/predict/clas_system --image_file ./hubserving/ILSVRC2012_val_00006666.JPEG --batch_size 8
-```
-
-### Returned result format
-The returned result is a list, including the `top_k`'s classification results, corresponding scores and the time cost of prediction, details as follows.
-
-```
-list: The returned results
-└─ list: The result of first picture
- └─ list: The top-k classification results, sorted in descending order of score
- └─ list: The scores corresponding to the top-k classification results, sorted in descending order of score
- └─ float: The time cost of predicting the picture, unit second
+cd PaddleClas/deploy
+python3.7 hubserving/test_hubserving.py \
+--server_url http://127.0.0.1:8866/predict/clas_system \
+--image_file ./hubserving/ILSVRC2012_val_00006666.JPEG \
+--batch_size 8
+```
+**Predicted output**
+```log
+The result(s): class_ids: [57, 67, 68, 58, 65], label_names: ['garter snake, grass snake', 'diamondback, diamondback rattlesnake, Crotalus adamanteus', 'sidewinder, horned rattlesnake, Crotalus cerastes' , 'water snake', 'sea snake'], scores: [0.21915, 0.15631, 0.14794, 0.13177, 0.12285]
+The average time of prediction cost: 2.970 s/image
+The average time cost: 3.014 s/image
+The average top-1 score: 0.110
+```
+
+**Script parameter description**:
+* **server_url**: Service address, the format is `http://[ip_address]:[port]/predict/[module_name]`.
+* **image_path**: The test image path, which can be a single image path or an image collection directory path.
+* **batch_size**: [**OPTIONAL**] Make predictions in `batch_size` size, default is `1`.
+* **resize_short**: [**optional**] When preprocessing, resize by short edge, default is `256`.
+* **crop_size**: [**Optional**] The size of the center crop during preprocessing, the default is `224`.
+* **normalize**: [**Optional**] Whether to perform `normalize` during preprocessing, the default is `True`.
+* **to_chw**: [**Optional**] Whether to adjust to `CHW` order when preprocessing, the default is `True`.
+
+**Note**: If you use `Transformer` series models, such as `DeiT_***_384`, `ViT_***_384`, etc., please pay attention to the input data size of the model, you need to specify `--resize_short=384 -- crop_size=384`.
+
+**Return result format description**:
+The returned result is a list (list), including the top-k classification results, the corresponding scores, and the time-consuming prediction of this image, as follows:
+```shell
+list: return result
+└──list: first image result
+ ├── list: the top k classification results, sorted in descending order of score
+ ├── list: the scores corresponding to the first k classification results, sorted in descending order of score
+ └── float: The image classification time, in seconds
```
-**Note:** If you need to add, delete or modify the returned fields, you can modify the corresponding module. For the details, refer to the user-defined modification service module in the next section.
-## User defined service module modification
-If you need to modify the service logic, the following steps are generally required:
-1. Stop service
-```shell
-hub serving stop --port/-p XXXX
-```
+
+## 7. User defined service module modification
-2. Modify the code in the corresponding files, like `module.py` and `params.py`, according to the actual needs. You need re-install(hub install hubserving/clas/) and re-deploy after modifing `module.py`.
-After modifying and installing and before deploying, you can use `python hubserving/clas/module.py` to test the installed service module.
+If you need to modify the service logic, you need to do the following:
-For example, if you need to replace the model used by the deployed service, you need to modify model path parameters `cfg.model_file` and `cfg.params_file` in `params.py`. Of course, other related parameters may need to be modified at the same time. Please modify and debug according to the actual situation.
-
-3. Uninstall old service module
-```shell
-hub uninstall clas_system
-```
+1. Stop the service
+ ```shell
+ hub serving stop --port/-p XXXX
+ ```
-4. Install modified service module
-```shell
-hub install hubserving/clas/
-```
+2. Go to the corresponding `module.py` and `params.py` and other files to modify the code according to actual needs. `module.py` needs to be reinstalled after modification (`hub install hubserving/clas/`) and deployed. Before deploying, you can use the `python3.7 hubserving/clas/module.py` command to quickly test the code ready for deployment.
-5. Restart service
-```shell
-hub serving start -m clas_system
-```
+3. Uninstall the old service pack
+ ```shell
+ hub uninstall clas_system
+ ```
-**Note**:
+4. Install the new modified service pack
+ ```shell
+ hub install hubserving/clas/
+ ```
-Common parameters can be modified in params.py:
-* Directory of model files(include model structure file and model parameters file):
- ```python
- "inference_model_dir":
- ```
-* The number of Top-k results returned during post-processing:
- ```python
- 'topk':
- ```
-* Mapping file corresponding to label and class ID during post-processing:
- ```python
- 'class_id_map_file':
- ```
+5. Restart the service
+ ```shell
+ hub serving start -m clas_system
+ ```
-In order to avoid unnecessary delay and be able to predict in batch, the preprocessing (include resize, crop and other) is completed in the client, so modify [test_hubserving.py](./test_hubserving.py#L35-L52) if necessary.
+**Notice**:
+Common parameters can be modified in `PaddleClas/deploy/hubserving/clas/params.py`:
+ * To replace the model, you need to modify the model file path parameters:
+ ```python
+ "inference_model_dir":
+ ```
+ * Change the number of `top-k` results returned when postprocessing:
+ ```python
+ 'topk':
+ ```
+ * The mapping file corresponding to the lable and class id when changing the post-processing:
+ ```python
+ 'class_id_map_file':
+ ```
+
+In order to avoid unnecessary delay and be able to predict with batch_size, data preprocessing logic (including `resize`, `crop` and other operations) is completed on the client side, so it needs to modify data preprocessing logic related code in [PaddleClas/deploy/hubserving/test_hubserving.py# L41-L47](./test_hubserving.py#L41-L47) and [PaddleClas/deploy/hubserving/test_hubserving.py#L51-L76](./test_hubserving.py#L51-L76).
diff --git a/docs/en/inference_deployment/paddle_hub_serving_deploy_en.md b/docs/en/inference_deployment/paddle_hub_serving_deploy_en.md
index 0aa9ca2097f5dede3408c8b482e912b52c479a8d..4dddc94bd8456a882e42000b640870155f46da7c 100644
--- a/docs/en/inference_deployment/paddle_hub_serving_deploy_en.md
+++ b/docs/en/inference_deployment/paddle_hub_serving_deploy_en.md
@@ -1,10 +1,9 @@
-English|[Chinese](../../zh_CN/inference_deployment/paddle_hub_serving_deploy.md)
+English | [简体中文](../../zh_CN/inference_deployment/paddle_hub_serving_deploy.md)
+
# Service deployment based on PaddleHub Serving
PaddleClas supports rapid service deployment through PaddleHub. Currently, the deployment of image classification is supported. Please look forward to the deployment of image recognition.
----
-
## Catalogue
- [1. Introduction](#1)
- [2. Prepare the environment](#2)
@@ -34,7 +33,7 @@ deploy/hubserving/clas/
## 2. Prepare the environment
```shell
-# Install paddlehub, please install version 2.0
+# Install paddlehub, version 2.1.0 is recommended
python3.7 -m pip install paddlehub==2.1.0 --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple
```
@@ -236,4 +235,4 @@ Common parameters can be modified in `PaddleClas/deploy/hubserving/clas/params.p
'class_id_map_file':
```
-In order to avoid unnecessary delay and be able to predict with batch_size, data preprocessing logic (including `resize`, `crop` and other operations) is completed on the client side, so it needs to be in [PaddleClas/deploy/hubserving/test_hubserving.py# Modify the code related to data preprocessing logic in L35-L52](../../../deploy/hubserving/test_hubserving.py).
+In order to avoid unnecessary delay and be able to predict with batch_size, data preprocessing logic (including `resize`, `crop` and other operations) is completed on the client side, so it needs to be in [PaddleClas/deploy/hubserving/test_hubserving.py# L41-L47](../../../deploy/hubserving/test_hubserving.py#L41-L47) and [PaddleClas/deploy/hubserving/test_hubserving.py#L51-L76](../../../deploy/hubserving/test_hubserving.py#L51-L76) Modify the data preprocessing logic related code.
diff --git a/docs/zh_CN/inference_deployment/paddle_hub_serving_deploy.md b/docs/zh_CN/inference_deployment/paddle_hub_serving_deploy.md
index 96987d4748198ca8c6ec384e9fe63c00a1dd361f..37d688b32051af8fe5a44dcd245c5340e5baafe2 100644
--- a/docs/zh_CN/inference_deployment/paddle_hub_serving_deploy.md
+++ b/docs/zh_CN/inference_deployment/paddle_hub_serving_deploy.md
@@ -1,10 +1,9 @@
-简体中文|[English](../../en/inference_deployment/paddle_hub_serving_deploy_en.md)
+简体中文 | [English](../../en/inference_deployment/paddle_hub_serving_deploy_en.md)
+
# 基于 PaddleHub Serving 的服务部署
PaddleClas 支持通过 PaddleHub 快速进行服务化部署。目前支持图像分类的部署,图像识别的部署敬请期待。
----
-
## 目录
- [1. 简介](#1)
@@ -35,7 +34,7 @@ deploy/hubserving/clas/
## 2. 准备环境
```shell
-# 安装 paddlehub,请安装 2.0 版本
+# 安装 paddlehub,建议安装 2.1.0 版本
python3.7 -m pip install paddlehub==2.1.0 --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple
```
@@ -237,4 +236,4 @@ list: 返回结果
'class_id_map_file':
```
-为了避免不必要的延时以及能够以 batch_size 进行预测,数据预处理逻辑(包括 `resize`、`crop` 等操作)均在客户端完成,因此需要在 [PaddleClas/deploy/hubserving/test_hubserving.py#L35-L52](../../../deploy/hubserving/test_hubserving.py) 中修改数据预处理逻辑相关代码。
+为了避免不必要的延时以及能够以 batch_size 进行预测,数据预处理逻辑(包括 `resize`、`crop` 等操作)均在客户端完成,因此需要在 [PaddleClas/deploy/hubserving/test_hubserving.py#L41-L47](../../../deploy/hubserving/test_hubserving.py#L41-L47) 以及 [PaddleClas/deploy/hubserving/test_hubserving.py#L51-L76](../../../deploy/hubserving/test_hubserving.py#L51-L76) 中修改数据预处理逻辑相关代码。