diff --git a/docs/zh_CN_tmp/.gitkeep b/docs/zh_CN_tmp/.gitkeep
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/docs/zh_CN_tmp/advanced_tutorials/.gitkeep b/docs/zh_CN_tmp/advanced_tutorials/.gitkeep
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/docs/zh_CN_tmp/advanced_tutorials/DataAugmentation.md b/docs/zh_CN_tmp/advanced_tutorials/DataAugmentation.md
index 0b1e0459454b5987ae1a60182545cd2ca4c84a76..cad5d04e4ab54a2df0118dbaaed6c203d35adddf 100644
--- a/docs/zh_CN_tmp/advanced_tutorials/DataAugmentation.md
+++ b/docs/zh_CN_tmp/advanced_tutorials/DataAugmentation.md
@@ -1,6 +1,6 @@
# 一、数据增强分类实战
-本节将基于ImageNet-1K的数据集详细介绍数据增强实验,如果想快速体验此方法,可以参考[**30分钟玩转PaddleClas(进阶版)**](../../tutorials/quick_start_professional.md)中基于CIFAR100的数据增强实验。如果想了解相关算法的内容,请参考[数据增强算法介绍](../algorithm_introduction/DataAugmentation.md)。
+本节将基于ImageNet-1K的数据集详细介绍数据增强实验,如果想快速体验此方法,可以参考[**30分钟玩转PaddleClas(进阶版)**](../quick_start/quick_start_classification.md)中基于CIFAR100的数据增强实验。如果想了解相关算法的内容,请参考[数据增强算法介绍](../algorithm_introduction/DataAugmentation.md)。
## 1.1 参数配置
diff --git a/docs/zh_CN_tmp/algorithm_introduction/.gitkeep b/docs/zh_CN_tmp/algorithm_introduction/.gitkeep
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/docs/zh_CN_tmp/algorithm_introduction/ImageNet_models.md b/docs/zh_CN_tmp/algorithm_introduction/ImageNet_models.md
index ec1a1775c1fa62c72140233a37a8b798db5a61ac..35cc9429fc54f45fac285eac3e9ff3f07d130c1f 100644
--- a/docs/zh_CN_tmp/algorithm_introduction/ImageNet_models.md
+++ b/docs/zh_CN_tmp/algorithm_introduction/ImageNet_models.md
@@ -25,7 +25,7 @@
### SSLD知识蒸馏预训练模型
-基于SSLD知识蒸馏的预训练模型列表如下所示,更多关于SSLD知识蒸馏方案的介绍可以参考:[SSLD知识蒸馏文档](./advanced_tutorials/distillation/distillation.md)。
+基于SSLD知识蒸馏的预训练模型列表如下所示,更多关于SSLD知识蒸馏方案的介绍可以参考:[SSLD知识蒸馏文档](./knowledge_distillation.md)。
* 服务器端知识蒸馏模型
@@ -298,7 +298,7 @@ ViT(Vision Transformer)与DeiT(Data-efficient Image Transformers)系列
| ViT_large_
patch16_224 | 0.8323 | 0.9650 | - | - | | 307 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams) |
| ViT_large_
patch16_384 | 0.8513 | 0.9736 | - | - | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams) |
| ViT_large_
patch32_384 | 0.8153 | 0.9608 | - | - | | | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams) |
-| | | | | | | | |
+
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | 下载地址 |
@@ -311,7 +311,7 @@ ViT(Vision Transformer)与DeiT(Data-efficient Image Transformers)系列
| DeiT_small_
distilled_patch16_224 | 0.809 | 0.953 | - | - | | 22 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_distilled_patch16_224_pretrained.pdparams) |
| DeiT_base_
distilled_patch16_224 | 0.831 | 0.964 | - | - | | 87 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams) |
| DeiT_base_
distilled_patch16_384 | 0.851 | 0.973 | - | - | | 88 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams) |
-| | | | | | | | |
+
diff --git a/docs/zh_CN_tmp/algorithm_introduction/image_classification.md b/docs/zh_CN_tmp/algorithm_introduction/image_classification.md
index 4e9383129801f27663a9e2b909527e2023519445..05b7c88671a5737db27fe5ba487bcf7288921de3 100644
--- a/docs/zh_CN_tmp/algorithm_introduction/image_classification.md
+++ b/docs/zh_CN_tmp/algorithm_introduction/image_classification.md
@@ -28,7 +28,7 @@ CIFAR-10数据集由10个类的60000个彩色图像组成,图像分辨率为32
### 2.2 模型准备
-在数据确定后,模型往往决定了最终算法精度的上限,在图像分类领域,经典的模型层出不穷,PaddleClas提供了36个系列共175个ImageNet预训练模型。具体的精度、速度等指标请参考[骨干网络和预训练模型库](../ImageNet_models_cn.md)。
+在数据确定后,模型往往决定了最终算法精度的上限,在图像分类领域,经典的模型层出不穷,PaddleClas提供了36个系列共175个ImageNet预训练模型。具体的精度、速度等指标请参考[骨干网络和预训练模型库](./ImageNet_models.md)。
### 2.3 模型训练
diff --git a/docs/zh_CN_tmp/data_preparation/.gitkeep b/docs/zh_CN_tmp/data_preparation/.gitkeep
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/docs/zh_CN_tmp/image_recognition_pipeline/.gitkeep b/docs/zh_CN_tmp/image_recognition_pipeline/.gitkeep
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/docs/zh_CN_tmp/others/competition_support.md b/docs/zh_CN_tmp/others/competition_support.md
index db702d496db76eee61dfc3ce9209a9e7bac5c198..4a3f24ef956f51aa056facbae823e0914c1b300a 100644
--- a/docs/zh_CN_tmp/others/competition_support.md
+++ b/docs/zh_CN_tmp/others/competition_support.md
@@ -6,7 +6,7 @@ PaddleClas的建设源于百度实际视觉业务应用的淬炼和视觉前沿
* 2019年Kaggle Open Images V5图像目标检测挑战赛亚军
* 技术报告可以参考:[https://arxiv.org/pdf/1911.07171.pdf](https://arxiv.org/pdf/1911.07171.pdf)
- * 详细文档与开源的模型可以参考:[OIDV5目标检测github地址](https://github.com/PaddlePaddle/PaddleDetection/blob/master/docs/featured_model/OIDV5_BASELINE_MODEL.md)
+ * 详细文档与开源的模型可以参考:[OIDV5目标检测github地址](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.2/static/docs/featured_model/champion_model/OIDV5_BASELINE_MODEL.md)
* 2019年Kaggle地标检索挑战赛亚军
* 技术报告可以参考:[https://arxiv.org/abs/1906.03990](https://arxiv.org/abs/1906.03990)
diff --git a/docs/zh_CN_tmp/others/more_demo.md b/docs/zh_CN_tmp/others/more_demo.md
index 4c3b4fa51e7448969bdc3b034779fc360037f88c..5971e7e3dd4b6065481725dbf953f46fb021b3ba 100644
--- a/docs/zh_CN_tmp/others/more_demo.md
+++ b/docs/zh_CN_tmp/others/more_demo.md
@@ -1,39 +1,39 @@
## 识别效果展示
- 商品识别