Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
e59c0efe
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e59c0efe
编写于
6月 14, 2021
作者:
B
Bin Lu
提交者:
GitHub
6月 14, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #830 from Intsigstephon/develop_reg
retrieval metric speed up
上级
c26429de
3ba45039
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
52 addition
and
118 deletion
+52
-118
ppcls/data/dataloader/icartoon_dataset.py
ppcls/data/dataloader/icartoon_dataset.py
+0
-4
ppcls/engine/trainer.py
ppcls/engine/trainer.py
+3
-9
ppcls/metric/__init__.py
ppcls/metric/__init__.py
+5
-13
ppcls/metric/metrics.py
ppcls/metric/metrics.py
+44
-92
未找到文件。
ppcls/data/dataloader/icartoon_dataset.py
浏览文件 @
e59c0efe
...
...
@@ -29,10 +29,6 @@ class ICartoonDataset(CommonDataset):
with
open
(
self
.
_cls_path
)
as
fd
:
lines
=
fd
.
readlines
()
if
seed
is
not
None
:
np
.
random
.
RandomState
(
seed
).
shuffle
(
lines
)
else
:
np
.
random
.
shuffle
(
lines
)
for
l
in
lines
:
l
=
l
.
strip
().
split
(
"
\t
"
)
self
.
images
.
append
(
os
.
path
.
join
(
self
.
_img_root
,
l
[
0
]))
...
...
ppcls/engine/trainer.py
浏览文件 @
e59c0efe
...
...
@@ -401,9 +401,7 @@ class Trainer(object):
name
=
'gallery'
)
query_feas
,
query_img_id
,
query_query_id
=
self
.
_cal_feature
(
name
=
'query'
)
gallery_img_id
=
gallery_img_id
# if gallery_unique_id is not None:
# gallery_unique_id = gallery_unique_id
# step2. do evaluation
sim_block_size
=
self
.
config
[
"Global"
].
get
(
"sim_block_size"
,
64
)
sections
=
[
sim_block_size
]
*
(
len
(
query_feas
)
//
sim_block_size
)
...
...
@@ -440,13 +438,9 @@ class Trainer(object):
for
key
in
metric_tmp
:
if
key
not
in
metric_dict
:
metric_dict
[
key
]
=
metric_tmp
[
key
]
metric_dict
[
key
]
=
metric_tmp
[
key
]
*
block_fea
.
shape
[
0
]
/
len
(
query_feas
)
else
:
metric_dict
[
key
]
+=
metric_tmp
[
key
]
num_sections
=
len
(
fea_blocks
)
for
key
in
metric_dict
:
metric_dict
[
key
]
=
metric_dict
[
key
]
/
num_sections
metric_dict
[
key
]
+=
metric_tmp
[
key
]
*
block_fea
.
shape
[
0
]
/
len
(
query_feas
)
metric_info_list
=
[]
for
key
in
metric_dict
:
...
...
ppcls/metric/__init__.py
浏览文件 @
e59c0efe
...
...
@@ -16,39 +16,31 @@ from paddle import nn
import
copy
from
collections
import
OrderedDict
from
.metrics
import
TopkAcc
,
mAP
,
mINP
,
Recallk
,
RetriMetric
from
.metrics
import
TopkAcc
,
mAP
,
mINP
,
Recallk
from
.metrics
import
DistillationTopkAcc
class
CombinedMetrics
(
nn
.
Layer
):
def
__init__
(
self
,
config_list
):
super
().
__init__
()
self
.
metric_func_list
=
[]
assert
isinstance
(
config_list
,
list
),
(
'operator config should be a list'
)
self
.
retri_config
=
dict
()
# retrieval metrics config
for
config
in
config_list
:
assert
isinstance
(
config
,
dict
)
and
len
(
config
)
==
1
,
"yaml format error"
metric_name
=
list
(
config
)[
0
]
if
metric_name
in
[
"Recallk"
,
"mAP"
,
"mINP"
]:
self
.
retri_config
[
metric_name
]
=
config
[
metric_name
]
continue
metric_params
=
config
[
metric_name
]
if
metric_params
is
not
None
:
self
.
metric_func_list
.
append
(
eval
(
metric_name
)(
**
metric_params
))
if
self
.
retri_config
:
self
.
metric_func_list
.
append
(
RetriMetric
(
self
.
retri_config
))
else
:
self
.
metric_func_list
.
append
(
eval
(
metric_name
)())
def
__call__
(
self
,
*
args
,
**
kwargs
):
metric_dict
=
OrderedDict
()
for
idx
,
metric_func
in
enumerate
(
self
.
metric_func_list
):
metric_dict
.
update
(
metric_func
(
*
args
,
**
kwargs
))
return
metric_dict
def
build_metrics
(
config
):
metrics_list
=
CombinedMetrics
(
copy
.
deepcopy
(
config
))
return
metrics_list
ppcls/metric/metrics.py
浏览文件 @
e59c0efe
...
...
@@ -15,8 +15,6 @@
import
numpy
as
np
import
paddle
import
paddle.nn
as
nn
from
functools
import
lru_cache
class
TopkAcc
(
nn
.
Layer
):
def
__init__
(
self
,
topk
=
(
1
,
5
)):
...
...
@@ -36,35 +34,54 @@ class TopkAcc(nn.Layer):
x
,
label
,
k
=
k
)
return
metric_dict
class
mAP
(
nn
.
Layer
):
def
__init__
(
self
):
super
().
__init__
()
def
forward
(
self
,
similarities_matrix
,
query_img_id
,
gallery_img_id
):
metric_dict
=
dict
()
_
,
all_AP
,
_
=
get_metrics
(
similarities_matrix
,
query_img_id
,
gallery_img_id
)
mAP
=
np
.
mean
(
all_AP
)
metric_dict
[
"mAP"
]
=
mAP
choosen_indices
=
paddle
.
argsort
(
similarities_matrix
,
axis
=
1
,
descending
=
True
)
gallery_labels_transpose
=
paddle
.
transpose
(
gallery_img_id
,
[
1
,
0
])
gallery_labels_transpose
=
paddle
.
broadcast_to
(
gallery_labels_transpose
,
shape
=
[
choosen_indices
.
shape
[
0
],
gallery_labels_transpose
.
shape
[
1
]])
choosen_label
=
paddle
.
index_sample
(
gallery_labels_transpose
,
choosen_indices
)
equal_flag
=
paddle
.
equal
(
choosen_label
,
query_img_id
)
equal_flag
=
paddle
.
cast
(
equal_flag
,
'float32'
)
acc_sum
=
paddle
.
cumsum
(
equal_flag
,
axis
=
1
)
div
=
paddle
.
arange
(
acc_sum
.
shape
[
1
]).
astype
(
"float32"
)
+
1
precision
=
paddle
.
divide
(
acc_sum
,
div
)
#calc map
precision_mask
=
paddle
.
multiply
(
equal_flag
,
precision
)
ap
=
paddle
.
sum
(
precision_mask
,
axis
=
1
)
/
paddle
.
sum
(
equal_flag
,
axis
=
1
)
metric_dict
[
"mAP"
]
=
paddle
.
mean
(
ap
).
numpy
()[
0
]
return
metric_dict
class
mINP
(
nn
.
Layer
):
def
__init__
(
self
):
super
().
__init__
()
def
forward
(
self
,
similarities_matrix
,
query_img_id
,
gallery_img_id
):
metric_dict
=
dict
()
_
,
_
,
all_INP
=
get_metrics
(
similarities_matrix
,
query_img_id
,
gallery_img_id
)
mINP
=
np
.
mean
(
all_INP
)
metric_dict
[
"mINP"
]
=
mINP
choosen_indices
=
paddle
.
argsort
(
similarities_matrix
,
axis
=
1
,
descending
=
True
)
gallery_labels_transpose
=
paddle
.
transpose
(
gallery_img_id
,
[
1
,
0
])
gallery_labels_transpose
=
paddle
.
broadcast_to
(
gallery_labels_transpose
,
shape
=
[
choosen_indices
.
shape
[
0
],
gallery_labels_transpose
.
shape
[
1
]])
choosen_label
=
paddle
.
index_sample
(
gallery_labels_transpose
,
choosen_indices
)
tmp
=
paddle
.
equal
(
choosen_label
,
query_img_id
)
tmp
=
paddle
.
cast
(
tmp
,
'float64'
)
#do accumulative sum
div
=
paddle
.
arange
(
tmp
.
shape
[
1
]).
astype
(
"float64"
)
+
2
minus
=
paddle
.
divide
(
tmp
,
div
)
auxilary
=
paddle
.
subtract
(
tmp
,
minus
)
hard_index
=
paddle
.
argmax
(
auxilary
,
axis
=
1
).
astype
(
"float64"
)
all_INP
=
paddle
.
divide
(
paddle
.
sum
(
tmp
,
axis
=
1
),
hard_index
)
mINP
=
paddle
.
mean
(
all_INP
)
metric_dict
[
"mINP"
]
=
mINP
.
numpy
()[
0
]
return
metric_dict
class
Recallk
(
nn
.
Layer
):
def
__init__
(
self
,
topk
=
(
1
,
5
)):
super
().
__init__
()
...
...
@@ -72,91 +89,26 @@ class Recallk(nn.Layer):
if
isinstance
(
topk
,
int
):
topk
=
[
topk
]
self
.
topk
=
topk
self
.
max_rank
=
max
(
self
.
topk
)
if
max
(
self
.
topk
)
>
50
else
50
def
forward
(
self
,
similarities_matrix
,
query_img_id
,
gallery_img_id
):
metric_dict
=
dict
()
all_cmc
,
_
,
_
=
get_metrics
(
similarities_matrix
,
query_img_id
,
gallery_img_id
,
self
.
max_rank
)
for
k
in
self
.
topk
:
metric_dict
[
"recall{}"
.
format
(
k
)]
=
all_cmc
[
k
-
1
]
return
metric_dict
#get cmc
choosen_indices
=
paddle
.
argsort
(
similarities_matrix
,
axis
=
1
,
descending
=
True
)
gallery_labels_transpose
=
paddle
.
transpose
(
gallery_img_id
,
[
1
,
0
])
gallery_labels_transpose
=
paddle
.
broadcast_to
(
gallery_labels_transpose
,
shape
=
[
choosen_indices
.
shape
[
0
],
gallery_labels_transpose
.
shape
[
1
]])
choosen_label
=
paddle
.
index_sample
(
gallery_labels_transpose
,
choosen_indices
)
equal_flag
=
paddle
.
equal
(
choosen_label
,
query_img_id
)
equal_flag
=
paddle
.
cast
(
equal_flag
,
'float32'
)
acc_sum
=
paddle
.
cumsum
(
equal_flag
,
axis
=
1
)
mask
=
paddle
.
greater_than
(
acc_sum
,
paddle
.
to_tensor
(
0.
)).
astype
(
"float32"
)
all_cmc
=
paddle
.
mean
(
mask
,
axis
=
0
).
numpy
()
# retrieval metrics
class
RetriMetric
(
nn
.
Layer
):
def
__init__
(
self
,
config
):
super
().
__init__
()
self
.
config
=
config
self
.
max_rank
=
50
#max(self.topk) if max(self.topk) > 50 else 50
def
forward
(
self
,
similarities_matrix
,
query_img_id
,
gallery_img_id
):
metric_dict
=
dict
()
all_cmc
,
all_AP
,
all_INP
=
get_metrics
(
similarities_matrix
,
query_img_id
,
gallery_img_id
,
self
.
max_rank
)
if
"Recallk"
in
self
.
config
.
keys
():
topk
=
self
.
config
[
'Recallk'
][
'topk'
]
assert
isinstance
(
topk
,
(
int
,
list
,
tuple
))
if
isinstance
(
topk
,
int
):
topk
=
[
topk
]
for
k
in
topk
:
for
k
in
self
.
topk
:
metric_dict
[
"recall{}"
.
format
(
k
)]
=
all_cmc
[
k
-
1
]
if
"mAP"
in
self
.
config
.
keys
():
mAP
=
np
.
mean
(
all_AP
)
metric_dict
[
"mAP"
]
=
mAP
if
"mINP"
in
self
.
config
.
keys
():
mINP
=
np
.
mean
(
all_INP
)
metric_dict
[
"mINP"
]
=
mINP
return
metric_dict
@
lru_cache
()
def
get_metrics
(
similarities_matrix
,
query_img_id
,
gallery_img_id
,
max_rank
=
50
):
num_q
,
num_g
=
similarities_matrix
.
shape
q_pids
=
query_img_id
.
numpy
().
reshape
((
query_img_id
.
shape
[
0
]))
g_pids
=
gallery_img_id
.
numpy
().
reshape
((
gallery_img_id
.
shape
[
0
]))
if
num_g
<
max_rank
:
max_rank
=
num_g
print
(
'Note: number of gallery samples is quite small, got {}'
.
format
(
num_g
))
indices
=
paddle
.
argsort
(
similarities_matrix
,
axis
=
1
,
descending
=
True
).
numpy
()
all_cmc
=
[]
all_AP
=
[]
all_INP
=
[]
num_valid_q
=
0
matches
=
(
g_pids
[
indices
]
==
q_pids
[:,
np
.
newaxis
]).
astype
(
np
.
int32
)
for
q_idx
in
range
(
num_q
):
raw_cmc
=
matches
[
q_idx
]
if
not
np
.
any
(
raw_cmc
):
continue
cmc
=
raw_cmc
.
cumsum
()
pos_idx
=
np
.
where
(
raw_cmc
==
1
)
max_pos_idx
=
np
.
max
(
pos_idx
)
inp
=
cmc
[
max_pos_idx
]
/
(
max_pos_idx
+
1.0
)
all_INP
.
append
(
inp
)
cmc
[
cmc
>
1
]
=
1
all_cmc
.
append
(
cmc
[:
max_rank
])
num_valid_q
+=
1.
num_rel
=
raw_cmc
.
sum
()
tmp_cmc
=
raw_cmc
.
cumsum
()
tmp_cmc
=
[
x
/
(
i
+
1.
)
for
i
,
x
in
enumerate
(
tmp_cmc
)]
tmp_cmc
=
np
.
asarray
(
tmp_cmc
)
*
raw_cmc
AP
=
tmp_cmc
.
sum
()
/
num_rel
all_AP
.
append
(
AP
)
assert
num_valid_q
>
0
,
'Error: all query identities do not appear in gallery'
all_cmc
=
np
.
asarray
(
all_cmc
).
astype
(
np
.
float32
)
all_cmc
=
all_cmc
.
sum
(
0
)
/
num_valid_q
return
all_cmc
,
all_AP
,
all_INP
class
DistillationTopkAcc
(
TopkAcc
):
def
__init__
(
self
,
model_key
,
feature_key
=
None
,
topk
=
(
1
,
5
)):
super
().
__init__
(
topk
=
topk
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录