Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
e469a975
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 2 年 前同步成功
通知
118
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e469a975
编写于
5月 31, 2021
作者:
W
Walter
提交者:
GitHub
5月 31, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #746 from FredHuang16/patch-1
add inception_v3.py
上级
8ffd18b2
79b21af7
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
494 addition
and
0 deletion
+494
-0
ppcls/arch/backbone/legendary_models/inception_v3.py
ppcls/arch/backbone/legendary_models/inception_v3.py
+494
-0
未找到文件。
ppcls/arch/backbone/legendary_models/inception_v3.py
0 → 100644
浏览文件 @
e469a975
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
,
division
,
print_function
import
paddle
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
from
paddle.nn
import
Conv2D
,
BatchNorm
,
Linear
,
Dropout
from
paddle.nn
import
AdaptiveAvgPool2D
,
MaxPool2D
,
AvgPool2D
from
paddle.nn.initializer
import
Uniform
import
math
from
ppcls.arch.backbone.base.theseus_layer
import
TheseusLayer
from
ppcls.utils.save_load
import
load_dygraph_pretrain
,
load_dygraph_pretrain_from_url
MODEL_URLS
=
{
"InceptionV3"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV3_pretrained.pdparams"
,
}
__all__
=
MODEL_URLS
.
keys
()
'''
InceptionV3 config: dict.
key: inception blocks of InceptionV3.
values: conv num in different blocks.
'''
NET_CONFIG
=
{
'inception_a'
:[[
192
,
256
,
288
],
[
32
,
64
,
64
]],
'inception_b'
:[
288
],
'inception_c'
:[[
768
,
768
,
768
,
768
],
[
128
,
160
,
160
,
192
]],
'inception_d'
:[
768
],
'inception_e'
:[
1280
,
2048
]
}
class
ConvBNLayer
(
TheseusLayer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
padding
=
0
,
groups
=
1
,
act
=
"relu"
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
act
=
act
self
.
conv
=
Conv2D
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
groups
=
groups
,
bias_attr
=
False
)
self
.
batch_norm
=
BatchNorm
(
num_filters
)
self
.
relu
=
nn
.
ReLU
()
def
forward
(
self
,
x
):
x
=
self
.
conv
(
x
)
x
=
self
.
batch_norm
(
x
)
if
self
.
act
:
x
=
self
.
relu
(
x
)
return
x
class
InceptionStem
(
TheseusLayer
):
def
__init__
(
self
):
super
(
InceptionStem
,
self
).
__init__
()
self
.
conv_1a_3x3
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
2
,
act
=
"relu"
)
self
.
conv_2a_3x3
=
ConvBNLayer
(
num_channels
=
32
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
1
,
act
=
"relu"
)
self
.
conv_2b_3x3
=
ConvBNLayer
(
num_channels
=
32
,
num_filters
=
64
,
filter_size
=
3
,
padding
=
1
,
act
=
"relu"
)
self
.
maxpool
=
MaxPool2D
(
kernel_size
=
3
,
stride
=
2
,
padding
=
0
)
self
.
conv_3b_1x1
=
ConvBNLayer
(
num_channels
=
64
,
num_filters
=
80
,
filter_size
=
1
,
act
=
"relu"
)
self
.
conv_4a_3x3
=
ConvBNLayer
(
num_channels
=
80
,
num_filters
=
192
,
filter_size
=
3
,
act
=
"relu"
)
def
forward
(
self
,
x
):
x
=
self
.
conv_1a_3x3
(
x
)
x
=
self
.
conv_2a_3x3
(
x
)
x
=
self
.
conv_2b_3x3
(
x
)
x
=
self
.
maxpool
(
x
)
x
=
self
.
conv_3b_1x1
(
x
)
x
=
self
.
conv_4a_3x3
(
x
)
x
=
self
.
maxpool
(
x
)
return
x
class
InceptionA
(
TheseusLayer
):
def
__init__
(
self
,
num_channels
,
pool_features
):
super
(
InceptionA
,
self
).
__init__
()
self
.
branch1x1
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
64
,
filter_size
=
1
,
act
=
"relu"
)
self
.
branch5x5_1
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
48
,
filter_size
=
1
,
act
=
"relu"
)
self
.
branch5x5_2
=
ConvBNLayer
(
num_channels
=
48
,
num_filters
=
64
,
filter_size
=
5
,
padding
=
2
,
act
=
"relu"
)
self
.
branch3x3dbl_1
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
64
,
filter_size
=
1
,
act
=
"relu"
)
self
.
branch3x3dbl_2
=
ConvBNLayer
(
num_channels
=
64
,
num_filters
=
96
,
filter_size
=
3
,
padding
=
1
,
act
=
"relu"
)
self
.
branch3x3dbl_3
=
ConvBNLayer
(
num_channels
=
96
,
num_filters
=
96
,
filter_size
=
3
,
padding
=
1
,
act
=
"relu"
)
self
.
branch_pool
=
AvgPool2D
(
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
exclusive
=
False
)
self
.
branch_pool_conv
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
pool_features
,
filter_size
=
1
,
act
=
"relu"
)
def
forward
(
self
,
x
):
branch1x1
=
self
.
branch1x1
(
x
)
branch5x5
=
self
.
branch5x5_1
(
x
)
branch5x5
=
self
.
branch5x5_2
(
branch5x5
)
branch3x3dbl
=
self
.
branch3x3dbl_1
(
x
)
branch3x3dbl
=
self
.
branch3x3dbl_2
(
branch3x3dbl
)
branch3x3dbl
=
self
.
branch3x3dbl_3
(
branch3x3dbl
)
branch_pool
=
self
.
branch_pool
(
x
)
branch_pool
=
self
.
branch_pool_conv
(
branch_pool
)
x
=
paddle
.
concat
([
branch1x1
,
branch5x5
,
branch3x3dbl
,
branch_pool
],
axis
=
1
)
return
x
class
InceptionB
(
TheseusLayer
):
def
__init__
(
self
,
num_channels
):
super
(
InceptionB
,
self
).
__init__
()
self
.
branch3x3
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
384
,
filter_size
=
3
,
stride
=
2
,
act
=
"relu"
)
self
.
branch3x3dbl_1
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
64
,
filter_size
=
1
,
act
=
"relu"
)
self
.
branch3x3dbl_2
=
ConvBNLayer
(
num_channels
=
64
,
num_filters
=
96
,
filter_size
=
3
,
padding
=
1
,
act
=
"relu"
)
self
.
branch3x3dbl_3
=
ConvBNLayer
(
num_channels
=
96
,
num_filters
=
96
,
filter_size
=
3
,
stride
=
2
,
act
=
"relu"
)
self
.
branch_pool
=
MaxPool2D
(
kernel_size
=
3
,
stride
=
2
)
def
forward
(
self
,
x
):
branch3x3
=
self
.
branch3x3
(
x
)
branch3x3dbl
=
self
.
branch3x3dbl_1
(
x
)
branch3x3dbl
=
self
.
branch3x3dbl_2
(
branch3x3dbl
)
branch3x3dbl
=
self
.
branch3x3dbl_3
(
branch3x3dbl
)
branch_pool
=
self
.
branch_pool
(
x
)
x
=
paddle
.
concat
([
branch3x3
,
branch3x3dbl
,
branch_pool
],
axis
=
1
)
return
x
class
InceptionC
(
TheseusLayer
):
def
__init__
(
self
,
num_channels
,
channels_7x7
):
super
(
InceptionC
,
self
).
__init__
()
self
.
branch1x1
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
192
,
filter_size
=
1
,
act
=
"relu"
)
self
.
branch7x7_1
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
channels_7x7
,
filter_size
=
1
,
stride
=
1
,
act
=
"relu"
)
self
.
branch7x7_2
=
ConvBNLayer
(
num_channels
=
channels_7x7
,
num_filters
=
channels_7x7
,
filter_size
=
(
1
,
7
),
stride
=
1
,
padding
=
(
0
,
3
),
act
=
"relu"
)
self
.
branch7x7_3
=
ConvBNLayer
(
num_channels
=
channels_7x7
,
num_filters
=
192
,
filter_size
=
(
7
,
1
),
stride
=
1
,
padding
=
(
3
,
0
),
act
=
"relu"
)
self
.
branch7x7dbl_1
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
channels_7x7
,
filter_size
=
1
,
act
=
"relu"
)
self
.
branch7x7dbl_2
=
ConvBNLayer
(
num_channels
=
channels_7x7
,
num_filters
=
channels_7x7
,
filter_size
=
(
7
,
1
),
padding
=
(
3
,
0
),
act
=
"relu"
)
self
.
branch7x7dbl_3
=
ConvBNLayer
(
num_channels
=
channels_7x7
,
num_filters
=
channels_7x7
,
filter_size
=
(
1
,
7
),
padding
=
(
0
,
3
),
act
=
"relu"
)
self
.
branch7x7dbl_4
=
ConvBNLayer
(
num_channels
=
channels_7x7
,
num_filters
=
channels_7x7
,
filter_size
=
(
7
,
1
),
padding
=
(
3
,
0
),
act
=
"relu"
)
self
.
branch7x7dbl_5
=
ConvBNLayer
(
num_channels
=
channels_7x7
,
num_filters
=
192
,
filter_size
=
(
1
,
7
),
padding
=
(
0
,
3
),
act
=
"relu"
)
self
.
branch_pool
=
AvgPool2D
(
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
exclusive
=
False
)
self
.
branch_pool_conv
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
192
,
filter_size
=
1
,
act
=
"relu"
)
def
forward
(
self
,
x
):
branch1x1
=
self
.
branch1x1
(
x
)
branch7x7
=
self
.
branch7x7_1
(
x
)
branch7x7
=
self
.
branch7x7_2
(
branch7x7
)
branch7x7
=
self
.
branch7x7_3
(
branch7x7
)
branch7x7dbl
=
self
.
branch7x7dbl_1
(
x
)
branch7x7dbl
=
self
.
branch7x7dbl_2
(
branch7x7dbl
)
branch7x7dbl
=
self
.
branch7x7dbl_3
(
branch7x7dbl
)
branch7x7dbl
=
self
.
branch7x7dbl_4
(
branch7x7dbl
)
branch7x7dbl
=
self
.
branch7x7dbl_5
(
branch7x7dbl
)
branch_pool
=
self
.
branch_pool
(
x
)
branch_pool
=
self
.
branch_pool_conv
(
branch_pool
)
x
=
paddle
.
concat
([
branch1x1
,
branch7x7
,
branch7x7dbl
,
branch_pool
],
axis
=
1
)
return
x
class
InceptionD
(
TheseusLayer
):
def
__init__
(
self
,
num_channels
):
super
(
InceptionD
,
self
).
__init__
()
self
.
branch3x3_1
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
192
,
filter_size
=
1
,
act
=
"relu"
)
self
.
branch3x3_2
=
ConvBNLayer
(
num_channels
=
192
,
num_filters
=
320
,
filter_size
=
3
,
stride
=
2
,
act
=
"relu"
)
self
.
branch7x7x3_1
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
192
,
filter_size
=
1
,
act
=
"relu"
)
self
.
branch7x7x3_2
=
ConvBNLayer
(
num_channels
=
192
,
num_filters
=
192
,
filter_size
=
(
1
,
7
),
padding
=
(
0
,
3
),
act
=
"relu"
)
self
.
branch7x7x3_3
=
ConvBNLayer
(
num_channels
=
192
,
num_filters
=
192
,
filter_size
=
(
7
,
1
),
padding
=
(
3
,
0
),
act
=
"relu"
)
self
.
branch7x7x3_4
=
ConvBNLayer
(
num_channels
=
192
,
num_filters
=
192
,
filter_size
=
3
,
stride
=
2
,
act
=
"relu"
)
self
.
branch_pool
=
MaxPool2D
(
kernel_size
=
3
,
stride
=
2
)
def
forward
(
self
,
x
):
branch3x3
=
self
.
branch3x3_1
(
x
)
branch3x3
=
self
.
branch3x3_2
(
branch3x3
)
branch7x7x3
=
self
.
branch7x7x3_1
(
x
)
branch7x7x3
=
self
.
branch7x7x3_2
(
branch7x7x3
)
branch7x7x3
=
self
.
branch7x7x3_3
(
branch7x7x3
)
branch7x7x3
=
self
.
branch7x7x3_4
(
branch7x7x3
)
branch_pool
=
self
.
branch_pool
(
x
)
x
=
paddle
.
concat
([
branch3x3
,
branch7x7x3
,
branch_pool
],
axis
=
1
)
return
x
class
InceptionE
(
TheseusLayer
):
def
__init__
(
self
,
num_channels
):
super
(
InceptionE
,
self
).
__init__
()
self
.
branch1x1
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
320
,
filter_size
=
1
,
act
=
"relu"
)
self
.
branch3x3_1
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
384
,
filter_size
=
1
,
act
=
"relu"
)
self
.
branch3x3_2a
=
ConvBNLayer
(
num_channels
=
384
,
num_filters
=
384
,
filter_size
=
(
1
,
3
),
padding
=
(
0
,
1
),
act
=
"relu"
)
self
.
branch3x3_2b
=
ConvBNLayer
(
num_channels
=
384
,
num_filters
=
384
,
filter_size
=
(
3
,
1
),
padding
=
(
1
,
0
),
act
=
"relu"
)
self
.
branch3x3dbl_1
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
448
,
filter_size
=
1
,
act
=
"relu"
)
self
.
branch3x3dbl_2
=
ConvBNLayer
(
num_channels
=
448
,
num_filters
=
384
,
filter_size
=
3
,
padding
=
1
,
act
=
"relu"
)
self
.
branch3x3dbl_3a
=
ConvBNLayer
(
num_channels
=
384
,
num_filters
=
384
,
filter_size
=
(
1
,
3
),
padding
=
(
0
,
1
),
act
=
"relu"
)
self
.
branch3x3dbl_3b
=
ConvBNLayer
(
num_channels
=
384
,
num_filters
=
384
,
filter_size
=
(
3
,
1
),
padding
=
(
1
,
0
),
act
=
"relu"
)
self
.
branch_pool
=
AvgPool2D
(
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
exclusive
=
False
)
self
.
branch_pool_conv
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
192
,
filter_size
=
1
,
act
=
"relu"
)
def
forward
(
self
,
x
):
branch1x1
=
self
.
branch1x1
(
x
)
branch3x3
=
self
.
branch3x3_1
(
x
)
branch3x3
=
[
self
.
branch3x3_2a
(
branch3x3
),
self
.
branch3x3_2b
(
branch3x3
),
]
branch3x3
=
paddle
.
concat
(
branch3x3
,
axis
=
1
)
branch3x3dbl
=
self
.
branch3x3dbl_1
(
x
)
branch3x3dbl
=
self
.
branch3x3dbl_2
(
branch3x3dbl
)
branch3x3dbl
=
[
self
.
branch3x3dbl_3a
(
branch3x3dbl
),
self
.
branch3x3dbl_3b
(
branch3x3dbl
),
]
branch3x3dbl
=
paddle
.
concat
(
branch3x3dbl
,
axis
=
1
)
branch_pool
=
self
.
branch_pool
(
x
)
branch_pool
=
self
.
branch_pool_conv
(
branch_pool
)
x
=
paddle
.
concat
([
branch1x1
,
branch3x3
,
branch3x3dbl
,
branch_pool
],
axis
=
1
)
return
x
class
Inception_V3
(
TheseusLayer
):
"""
Inception_V3
Args:
config: dict. config of Inception_V3.
class_num: int=1000. The number of classes.
pretrained: (True or False) or path of pretrained_model. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific Inception_V3 model depends on args.
"""
def
__init__
(
self
,
config
,
class_num
=
1000
,
pretrained
=
False
,
**
kwargs
):
super
(
Inception_V3
,
self
).
__init__
()
self
.
inception_a_list
=
config
[
'inception_a'
]
self
.
inception_c_list
=
config
[
'inception_c'
]
self
.
inception_b_list
=
config
[
'inception_b'
]
self
.
inception_d_list
=
config
[
'inception_d'
]
self
.
inception_e_list
=
config
[
'inception_e'
]
self
.
pretrained
=
pretrained
self
.
inception_stem
=
InceptionStem
()
self
.
inception_block_list
=
nn
.
LayerList
()
for
i
in
range
(
len
(
self
.
inception_a_list
[
0
])):
inception_a
=
InceptionA
(
self
.
inception_a_list
[
0
][
i
],
self
.
inception_a_list
[
1
][
i
])
self
.
inception_block_list
.
append
(
inception_a
)
for
i
in
range
(
len
(
self
.
inception_b_list
)):
inception_b
=
InceptionB
(
self
.
inception_b_list
[
i
])
self
.
inception_block_list
.
append
(
inception_b
)
for
i
in
range
(
len
(
self
.
inception_c_list
[
0
])):
inception_c
=
InceptionC
(
self
.
inception_c_list
[
0
][
i
],
self
.
inception_c_list
[
1
][
i
])
self
.
inception_block_list
.
append
(
inception_c
)
for
i
in
range
(
len
(
self
.
inception_d_list
)):
inception_d
=
InceptionD
(
self
.
inception_d_list
[
i
])
self
.
inception_block_list
.
append
(
inception_d
)
for
i
in
range
(
len
(
self
.
inception_e_list
)):
inception_e
=
InceptionE
(
self
.
inception_e_list
[
i
])
self
.
inception_block_list
.
append
(
inception_e
)
self
.
avg_pool
=
AdaptiveAvgPool2D
(
1
)
self
.
dropout
=
Dropout
(
p
=
0.2
,
mode
=
"downscale_in_infer"
)
stdv
=
1.0
/
math
.
sqrt
(
2048
*
1.0
)
self
.
fc
=
Linear
(
2048
,
class_num
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
)),
bias_attr
=
ParamAttr
())
def
forward
(
self
,
x
):
x
=
self
.
inception_stem
(
x
)
for
inception_block
in
self
.
inception_block_list
:
x
=
inception_block
(
x
)
x
=
self
.
avg_pool
(
x
)
x
=
paddle
.
reshape
(
x
,
shape
=
[
-
1
,
2048
])
x
=
self
.
dropout
(
x
)
x
=
self
.
fc
(
x
)
return
x
def
InceptionV3
(
**
kwargs
):
"""
InceptionV3
Args:
kwargs:
class_num: int=1000. Output dim of last fc layer.
pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific `InceptionV3` model
"""
model
=
Inception_V3
(
NET_CONFIG
,
**
kwargs
)
if
isinstance
(
model
.
pretrained
,
bool
):
if
model
.
pretrained
is
True
:
load_dygraph_pretrain_from_url
(
model
,
MODEL_URLS
[
"InceptionV3"
])
elif
isinstance
(
model
.
pretrained
,
str
):
load_dygraph_pretrain
(
model
,
model
.
pretrained
)
else
:
raise
RuntimeError
(
"pretrained type is not available. Please use `string` or `boolean` type"
)
return
model
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录