Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
e3324859
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e3324859
编写于
7月 13, 2020
作者:
littletomatodonkey
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add res2net200_vd_26w_4s_ssld doc
上级
ad6b6deb
变更
10
显示空白变更内容
内联
并排
Showing
10 changed file
with
17 addition
and
1 deletion
+17
-1
docs/en/advanced_tutorials/distillation/distillation_en.md
docs/en/advanced_tutorials/distillation/distillation_en.md
+2
-0
docs/en/models/SEResNext_and_Res2Net_en.md
docs/en/models/SEResNext_and_Res2Net_en.md
+1
-0
docs/en/models/models_intro_en.md
docs/en/models/models_intro_en.md
+2
-1
docs/en/update_history_en.md
docs/en/update_history_en.md
+4
-0
docs/images/distillation/distillation_perform_s.jpg
docs/images/distillation/distillation_perform_s.jpg
+0
-0
docs/images/models/V100_benchmark/v100.fp32.bs1.main_fps_top1_s.jpg
...s/models/V100_benchmark/v100.fp32.bs1.main_fps_top1_s.jpg
+0
-0
docs/zh_CN/advanced_tutorials/distillation/distillation.md
docs/zh_CN/advanced_tutorials/distillation/distillation.md
+2
-0
docs/zh_CN/models/SEResNext_and_Res2Net.md
docs/zh_CN/models/SEResNext_and_Res2Net.md
+1
-0
docs/zh_CN/models/models_intro.md
docs/zh_CN/models/models_intro.md
+1
-0
docs/zh_CN/update_history.md
docs/zh_CN/update_history.md
+4
-0
未找到文件。
docs/en/advanced_tutorials/distillation/distillation_en.md
浏览文件 @
e3324859
...
@@ -82,6 +82,7 @@ Training process is carried out on the large-scale dataset with 5 million images
...
@@ -82,6 +82,7 @@ Training process is carried out on the large-scale dataset with 5 million images
| MobileNetV3_small_x1_0 | 360 | 1e-5 | 5760/24 | 3.65625 | cosine_decay_warmup | 70.11% |
| MobileNetV3_small_x1_0 | 360 | 1e-5 | 5760/24 | 3.65625 | cosine_decay_warmup | 70.11% |
| ResNet50_vd | 360 | 7e-5 | 1024/32 | 0.4 | cosine_decay_warmup | 82.07% |
| ResNet50_vd | 360 | 7e-5 | 1024/32 | 0.4 | cosine_decay_warmup | 82.07% |
| ResNet101_vd | 360 | 7e-5 | 1024/32 | 0.4 | cosine_decay_warmup | 83.41% |
| ResNet101_vd | 360 | 7e-5 | 1024/32 | 0.4 | cosine_decay_warmup | 83.41% |
| Res2Net200_vd_26w_4s | 360 | 4e-5 | 1024/32 | 0.4 | cosine_decay_warmup | 84.82% |
## finetuning using ImageNet1k
## finetuning using ImageNet1k
...
@@ -96,6 +97,7 @@ Finetuning is carried out on ImageNet1k dataset to restore distribution between
...
@@ -96,6 +97,7 @@ Finetuning is carried out on ImageNet1k dataset to restore distribution between
| MobileNetV3_small_x1_0 | 30 | 1e-5 | 6400/32 | 0.025 | cosine_decay_warmup | 71.28% |
| MobileNetV3_small_x1_0 | 30 | 1e-5 | 6400/32 | 0.025 | cosine_decay_warmup | 71.28% |
| ResNet50_vd | 60 | 7e-5 | 1024/32 | 0.004 | cosine_decay_warmup | 82.39% |
| ResNet50_vd | 60 | 7e-5 | 1024/32 | 0.004 | cosine_decay_warmup | 82.39% |
| ResNet101_vd | 30 | 7e-5 | 1024/32 | 0.004 | cosine_decay_warmup | 83.73% |
| ResNet101_vd | 30 | 7e-5 | 1024/32 | 0.004 | cosine_decay_warmup | 83.73% |
| Res2Net200_vd_26w_4s | 360 | 4e-5 | 1024/32 | 0.004 | cosine_decay_warmup | 85.13% |
## Data agmentation and Fix strategy
## Data agmentation and Fix strategy
...
...
docs/en/models/SEResNext_and_Res2Net_en.md
浏览文件 @
e3324859
...
@@ -33,6 +33,7 @@ At present, there are a total of 24 pretrained models of the three categories op
...
@@ -33,6 +33,7 @@ At present, there are a total of 24 pretrained models of the three categories op
| Res2Net50_14w_8s | 0.795 | 0.947 | 0.781 | 0.939 | 9.010 | 25.720 |
| Res2Net50_14w_8s | 0.795 | 0.947 | 0.781 | 0.939 | 9.010 | 25.720 |
| Res2Net101_vd_26w_4s | 0.806 | 0.952 | | | 16.670 | 45.220 |
| Res2Net101_vd_26w_4s | 0.806 | 0.952 | | | 16.670 | 45.220 |
| Res2Net200_vd_26w_4s | 0.812 | 0.957 | | | 31.490 | 76.210 |
| Res2Net200_vd_26w_4s | 0.812 | 0.957 | | | 31.490 | 76.210 |
| Res2Net200_vd_26w_4s_ssld |
**0.851**
| 0.974 | | | 31.490 | 76.210 |
| ResNeXt50_32x4d | 0.778 | 0.938 | 0.778 | | 8.020 | 23.640 |
| ResNeXt50_32x4d | 0.778 | 0.938 | 0.778 | | 8.020 | 23.640 |
| ResNeXt50_vd_32x4d | 0.796 | 0.946 | | | 8.500 | 23.660 |
| ResNeXt50_vd_32x4d | 0.796 | 0.946 | | | 8.500 | 23.660 |
| ResNeXt50_64x4d | 0.784 | 0.941 | | | 15.060 | 42.360 |
| ResNeXt50_64x4d | 0.784 | 0.941 | | | 15.060 | 42.360 |
...
...
docs/en/models/models_intro_en.md
浏览文件 @
e3324859
...
@@ -130,6 +130,7 @@ python tools/infer/predict.py \
...
@@ -130,6 +130,7 @@ python tools/infer/predict.py \
-
[
Res2Net50_14w_8s
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_14w_8s_pretrained.tar
)
-
[
Res2Net50_14w_8s
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_14w_8s_pretrained.tar
)
-
[
Res2Net101_vd_26w_4s
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net101_vd_26w_4s_pretrained.tar
)
-
[
Res2Net101_vd_26w_4s
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net101_vd_26w_4s_pretrained.tar
)
-
[
Res2Net200_vd_26w_4s
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_pretrained.tar
)
-
[
Res2Net200_vd_26w_4s
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_pretrained.tar
)
-
[
Res2Net200_vd_26w_4s_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_ssld_pretrained.tar
)
-
Inception series
-
Inception series
...
...
docs/en/update_history_en.md
浏览文件 @
e3324859
# Release Notes
# Release Notes
*
2020.07.14
*
Add
`Res2Net200_vd_26w_4s_ssld`
pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 85.13%.
*
Add
`Fix_ResNet50_vd_ssld_v2`
pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 84.00%.
*
2020.06.17
*
2020.06.17
*
Add English documents。
*
Add English documents。
...
...
docs/images/distillation/distillation_perform_s.jpg
查看替换文件 @
ad6b6deb
浏览文件 @
e3324859
67.0 KB
|
W:
|
H:
74.3 KB
|
W:
|
H:
2-up
Swipe
Onion skin
docs/images/models/V100_benchmark/v100.fp32.bs1.main_fps_top1_s.jpg
查看替换文件 @
ad6b6deb
浏览文件 @
e3324859
145.5 KB
|
W:
|
H:
161.6 KB
|
W:
|
H:
2-up
Swipe
Onion skin
docs/zh_CN/advanced_tutorials/distillation/distillation.md
浏览文件 @
e3324859
...
@@ -85,6 +85,7 @@ SSLD的流程图如下图所示。
...
@@ -85,6 +85,7 @@ SSLD的流程图如下图所示。
| MobileNetV3_small_x1_0 | 360 | 1e-5 | 5760/24 | 3.65625 | cosine_decay_warmup | 70.11% |
| MobileNetV3_small_x1_0 | 360 | 1e-5 | 5760/24 | 3.65625 | cosine_decay_warmup | 70.11% |
| ResNet50_vd | 360 | 7e-5 | 1024/32 | 0.4 | cosine_decay_warmup | 82.07% |
| ResNet50_vd | 360 | 7e-5 | 1024/32 | 0.4 | cosine_decay_warmup | 82.07% |
| ResNet101_vd | 360 | 7e-5 | 1024/32 | 0.4 | cosine_decay_warmup | 83.41% |
| ResNet101_vd | 360 | 7e-5 | 1024/32 | 0.4 | cosine_decay_warmup | 83.41% |
| Res2Net200_vd_26w_4s | 360 | 4e-5 | 1024/32 | 0.4 | cosine_decay_warmup | 84.82% |
## 3.3 ImageNet1k训练集finetune
## 3.3 ImageNet1k训练集finetune
...
@@ -99,6 +100,7 @@ SSLD的流程图如下图所示。
...
@@ -99,6 +100,7 @@ SSLD的流程图如下图所示。
| MobileNetV3_small_x1_0 | 30 | 1e-5 | 6400/32 | 0.025 | cosine_decay_warmup | 71.28% |
| MobileNetV3_small_x1_0 | 30 | 1e-5 | 6400/32 | 0.025 | cosine_decay_warmup | 71.28% |
| ResNet50_vd | 60 | 7e-5 | 1024/32 | 0.004 | cosine_decay_warmup | 82.39% |
| ResNet50_vd | 60 | 7e-5 | 1024/32 | 0.004 | cosine_decay_warmup | 82.39% |
| ResNet101_vd | 30 | 7e-5 | 1024/32 | 0.004 | cosine_decay_warmup | 83.73% |
| ResNet101_vd | 30 | 7e-5 | 1024/32 | 0.004 | cosine_decay_warmup | 83.73% |
| Res2Net200_vd_26w_4s | 360 | 4e-5 | 1024/32 | 0.004 | cosine_decay_warmup | 85.13% |
## 3.4 数据增广以及基于Fix策略的微调
## 3.4 数据增广以及基于Fix策略的微调
...
...
docs/zh_CN/models/SEResNext_and_Res2Net.md
浏览文件 @
e3324859
...
@@ -32,6 +32,7 @@ Res2Net是2019年提出的一种全新的对ResNet的改进方案,该方案可
...
@@ -32,6 +32,7 @@ Res2Net是2019年提出的一种全新的对ResNet的改进方案,该方案可
| Res2Net50_14w_8s | 0.795 | 0.947 | 0.781 | 0.939 | 9.010 | 25.720 |
| Res2Net50_14w_8s | 0.795 | 0.947 | 0.781 | 0.939 | 9.010 | 25.720 |
| Res2Net101_vd_26w_4s | 0.806 | 0.952 | | | 16.670 | 45.220 |
| Res2Net101_vd_26w_4s | 0.806 | 0.952 | | | 16.670 | 45.220 |
| Res2Net200_vd_26w_4s | 0.812 | 0.957 | | | 31.490 | 76.210 |
| Res2Net200_vd_26w_4s | 0.812 | 0.957 | | | 31.490 | 76.210 |
| Res2Net200_vd_26w_4s |
**0.851**
| 0.974 | | | 31.490 | 76.210 |
| ResNeXt50_32x4d | 0.778 | 0.938 | 0.778 | | 8.020 | 23.640 |
| ResNeXt50_32x4d | 0.778 | 0.938 | 0.778 | | 8.020 | 23.640 |
| ResNeXt50_vd_32x4d | 0.796 | 0.946 | | | 8.500 | 23.660 |
| ResNeXt50_vd_32x4d | 0.796 | 0.946 | | | 8.500 | 23.660 |
| ResNeXt50_64x4d | 0.784 | 0.941 | | | 15.060 | 42.360 |
| ResNeXt50_64x4d | 0.784 | 0.941 | | | 15.060 | 42.360 |
...
...
docs/zh_CN/models/models_intro.md
浏览文件 @
e3324859
...
@@ -130,6 +130,7 @@ python tools/infer/predict.py \
...
@@ -130,6 +130,7 @@ python tools/infer/predict.py \
-
[
Res2Net50_14w_8s
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_14w_8s_pretrained.tar
)
-
[
Res2Net50_14w_8s
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_14w_8s_pretrained.tar
)
-
[
Res2Net101_vd_26w_4s
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net101_vd_26w_4s_pretrained.tar
)
-
[
Res2Net101_vd_26w_4s
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net101_vd_26w_4s_pretrained.tar
)
-
[
Res2Net200_vd_26w_4s
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_pretrained.tar
)
-
[
Res2Net200_vd_26w_4s
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_pretrained.tar
)
-
[
Res2Net200_vd_26w_4s_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_ssld_pretrained.tar
)
-
Inception系列
-
Inception系列
...
...
docs/zh_CN/update_history.md
浏览文件 @
e3324859
# 更新日志
# 更新日志
*
2020.07.14
*
添加Res2Net200_vd_26w_4s_ssld模型,在ImageNet上Top-1 Acc可达85.13%。
*
添加Fix_ResNet50_vd_ssld_v2模型,,在ImageNet上Top-1 Acc可达84.0%。
*
2020.06.17
*
2020.06.17
*
添加英文文档。
*
添加英文文档。
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录