diff --git a/README_ch.md b/README_ch.md
index 9219857fd950c4d5a4c96ae28ad80d7c5e060cb1..74f02ecca839b53217b2189a65afaf0b012b3261 100644
--- a/README_ch.md
+++ b/README_ch.md
@@ -7,6 +7,12 @@
飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别任务的工具集,助力使用者训练出更好的视觉模型和应用落地。
**近期更新**
+- 🔥️ 2022.5.26 [飞桨产业实践范例直播课](http://aglc.cn/v-c4FAR),解读**超轻量重点区域人员出入管理方案**,欢迎报名来交流。
+
+
+
+- 2022.5.23 新增[人员出入管理范例库](https://aistudio.baidu.com/aistudio/projectdetail/4094475),具体内容可以在 AI Stuio 上体验。
+- 2022.5.20 上线[PP-HGNet](./docs/zh_CN/models/PP-HGNet.md), [PP-LCNet v2](./docs/zh_CN/models/PP-LCNetV2.md)
- 2022.4.21 新增 CVPR2022 oral论文 [MixFormer](https://arxiv.org/pdf/2204.02557.pdf) 相关[代码](https://github.com/PaddlePaddle/PaddleClas/pull/1820/files)。
- 2022.1.27 全面升级文档;新增[PaddleServing C++ pipeline部署方式](./deploy/paddleserving)和[18M图像识别安卓部署Demo](./deploy/lite_shitu)。
- 2021.11.1 发布[PP-ShiTu技术报告](https://arxiv.org/pdf/2111.00775.pdf),新增饮料识别demo
diff --git a/deploy/configs/PULC/person/inference_person_cls.yaml b/deploy/configs/PULC/person/inference_person_cls.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..a70f663a792fcdcab3b7d45059f2afe0b1efbf07
--- /dev/null
+++ b/deploy/configs/PULC/person/inference_person_cls.yaml
@@ -0,0 +1,36 @@
+Global:
+ infer_imgs: "./images/PULC/person/objects365_02035329.jpg"
+ inference_model_dir: "./models/person_cls_infer"
+ batch_size: 1
+ use_gpu: True
+ enable_mkldnn: False
+ cpu_num_threads: 10
+ enable_benchmark: True
+ use_fp16: False
+ ir_optim: True
+ use_tensorrt: False
+ gpu_mem: 8000
+ enable_profile: False
+
+PreProcess:
+ transform_ops:
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 0.00392157
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ channel_num: 3
+ - ToCHWImage:
+
+PostProcess:
+ main_indicator: ThreshOutput
+ ThreshOutput:
+ threshold: 0.9
+ label_0: nobody
+ label_1: someone
+ SavePreLabel:
+ save_dir: ./pre_label/
diff --git a/deploy/configs/inference_cartoon.yaml b/deploy/configs/inference_cartoon.yaml
index 7d93d98cc0696d8e1508e02db2cc864d6f917d19..e79da55090130223466fd6b6a078b9909d6e26f2 100644
--- a/deploy/configs/inference_cartoon.yaml
+++ b/deploy/configs/inference_cartoon.yaml
@@ -8,7 +8,7 @@ Global:
image_shape: [3, 640, 640]
threshold: 0.2
max_det_results: 5
- labe_list:
+ label_list:
- foreground
use_gpu: True
diff --git a/deploy/configs/inference_det.yaml b/deploy/configs/inference_det.yaml
index c809a0257bc7c5b774f20fb3edb50a08e7d67bbb..dab7908ef7f59bfed077d9189811aedb650b0e92 100644
--- a/deploy/configs/inference_det.yaml
+++ b/deploy/configs/inference_det.yaml
@@ -5,7 +5,7 @@ Global:
image_shape: [3, 640, 640]
threshold: 0.2
max_det_results: 1
- labe_list:
+ label_list:
- foreground
# inference engine config
diff --git a/deploy/configs/inference_drink.yaml b/deploy/configs/inference_drink.yaml
index d044965f446634dcc151fd496a9d7b403b869d68..1c3e2c29aa8ddd5db46bbc8660c9f45942696a9c 100644
--- a/deploy/configs/inference_drink.yaml
+++ b/deploy/configs/inference_drink.yaml
@@ -8,7 +8,7 @@ Global:
image_shape: [3, 640, 640]
threshold: 0.2
max_det_results: 5
- labe_list:
+ label_list:
- foreground
use_gpu: True
diff --git a/deploy/configs/inference_general.yaml b/deploy/configs/inference_general.yaml
index 6b397b5047b427d02014060380112b096e0b2da2..8fb8ae3a56697b882be00da554f33750ead42f70 100644
--- a/deploy/configs/inference_general.yaml
+++ b/deploy/configs/inference_general.yaml
@@ -8,7 +8,7 @@ Global:
image_shape: [3, 640, 640]
threshold: 0.2
max_det_results: 5
- labe_list:
+ label_list:
- foreground
use_gpu: True
diff --git a/deploy/configs/inference_general_binary.yaml b/deploy/configs/inference_general_binary.yaml
index d76dae8f8f7c70f27996f6b20fd623bdc00bc441..72ec31fc438d1f884bada59507a90d172ab4a416 100644
--- a/deploy/configs/inference_general_binary.yaml
+++ b/deploy/configs/inference_general_binary.yaml
@@ -8,7 +8,7 @@ Global:
image_shape: [3, 640, 640]
threshold: 0.2
max_det_results: 5
- labe_list:
+ label_list:
- foreground
use_gpu: True
diff --git a/deploy/configs/inference_logo.yaml b/deploy/configs/inference_logo.yaml
index f78ca25a042b3224a973d81f7b0242ace7c25430..2b8228eab772f8b1488275163518a6e059a49c53 100644
--- a/deploy/configs/inference_logo.yaml
+++ b/deploy/configs/inference_logo.yaml
@@ -8,7 +8,7 @@ Global:
image_shape: [3, 640, 640]
threshold: 0.2
max_det_results: 5
- labe_list:
+ label_list:
- foreground
use_gpu: True
diff --git a/deploy/configs/inference_product.yaml b/deploy/configs/inference_product.yaml
index e7b494c383aa5f42b4515446805b1357ba43107c..78ba32068cb696e897c39d516e66b323bd12ad61 100644
--- a/deploy/configs/inference_product.yaml
+++ b/deploy/configs/inference_product.yaml
@@ -8,7 +8,7 @@ Global:
image_shape: [3, 640, 640]
threshold: 0.2
max_det_results: 5
- labe_list:
+ label_list:
- foreground
# inference engine config
diff --git a/deploy/configs/inference_vehicle.yaml b/deploy/configs/inference_vehicle.yaml
index d99f42ad684150f1efeaf65f031ee1ea707fee37..e289e9f523b061dd26b8d687e594499dd7cdec37 100644
--- a/deploy/configs/inference_vehicle.yaml
+++ b/deploy/configs/inference_vehicle.yaml
@@ -8,7 +8,7 @@ Global:
image_shape: [3, 640, 640]
threshold: 0.2
max_det_results: 5
- labe_list:
+ label_list:
- foreground
use_gpu: True
diff --git a/deploy/cpp_shitu/include/object_detector.h b/deploy/cpp_shitu/include/object_detector.h
index 5bfc56253b1845a50f3b6b093db314e97505cfef..6855a0dcc84c2711283fe8d23ba1d2afe376fb0e 100644
--- a/deploy/cpp_shitu/include/object_detector.h
+++ b/deploy/cpp_shitu/include/object_detector.h
@@ -33,106 +33,106 @@ using namespace paddle_infer;
namespace Detection {
// Object Detection Result
- struct ObjectResult {
- // Rectangle coordinates of detected object: left, right, top, down
- std::vector rect;
- // Class id of detected object
- int class_id;
- // Confidence of detected object
- float confidence;
- };
+struct ObjectResult {
+ // Rectangle coordinates of detected object: left, right, top, down
+ std::vector rect;
+ // Class id of detected object
+ int class_id;
+ // Confidence of detected object
+ float confidence;
+};
// Generate visualization colormap for each class
- std::vector GenerateColorMap(int num_class);
+std::vector GenerateColorMap(int num_class);
// Visualiztion Detection Result
- cv::Mat VisualizeResult(const cv::Mat &img,
- const std::vector &results,
- const std::vector &lables,
- const std::vector &colormap, const bool is_rbox);
-
- class ObjectDetector {
- public:
- explicit ObjectDetector(const YAML::Node &config_file) {
- this->use_gpu_ = config_file["Global"]["use_gpu"].as();
- if (config_file["Global"]["gpu_id"].IsDefined())
- this->gpu_id_ = config_file["Global"]["gpu_id"].as();
- this->gpu_mem_ = config_file["Global"]["gpu_mem"].as();
- this->cpu_math_library_num_threads_ =
- config_file["Global"]["cpu_num_threads"].as();
- this->use_mkldnn_ = config_file["Global"]["enable_mkldnn"].as();
- this->use_tensorrt_ = config_file["Global"]["use_tensorrt"].as();
- this->use_fp16_ = config_file["Global"]["use_fp16"].as();
- this->model_dir_ =
- config_file["Global"]["det_inference_model_dir"].as();
- this->threshold_ = config_file["Global"]["threshold"].as();
- this->max_det_results_ = config_file["Global"]["max_det_results"].as();
- this->image_shape_ =
- config_file["Global"]["image_shape"].as < std::vector < int >> ();
- this->label_list_ =
- config_file["Global"]["labe_list"].as < std::vector < std::string >> ();
- this->ir_optim_ = config_file["Global"]["ir_optim"].as();
- this->batch_size_ = config_file["Global"]["batch_size"].as();
-
- preprocessor_.Init(config_file["DetPreProcess"]["transform_ops"]);
- LoadModel(model_dir_, batch_size_, run_mode);
- }
-
- // Load Paddle inference model
- void LoadModel(const std::string &model_dir, const int batch_size = 1,
- const std::string &run_mode = "fluid");
-
- // Run predictor
- void Predict(const std::vector imgs, const int warmup = 0,
- const int repeats = 1,
- std::vector *result = nullptr,
- std::vector *bbox_num = nullptr,
- std::vector *times = nullptr);
-
- const std::vector &GetLabelList() const {
- return this->label_list_;
- }
-
- const float &GetThreshold() const { return this->threshold_; }
-
- private:
- bool use_gpu_ = true;
- int gpu_id_ = 0;
- int gpu_mem_ = 800;
- int cpu_math_library_num_threads_ = 6;
- std::string run_mode = "fluid";
- bool use_mkldnn_ = false;
- bool use_tensorrt_ = false;
- bool batch_size_ = 1;
- bool use_fp16_ = false;
- std::string model_dir_;
- float threshold_ = 0.5;
- float max_det_results_ = 5;
- std::vector image_shape_ = {3, 640, 640};
- std::vector label_list_;
- bool ir_optim_ = true;
- bool det_permute_ = true;
- bool det_postprocess_ = true;
- int min_subgraph_size_ = 30;
- bool use_dynamic_shape_ = false;
- int trt_min_shape_ = 1;
- int trt_max_shape_ = 1280;
- int trt_opt_shape_ = 640;
- bool trt_calib_mode_ = false;
-
- // Preprocess image and copy data to input buffer
- void Preprocess(const cv::Mat &image_mat);
-
- // Postprocess result
- void Postprocess(const std::vector mats,
- std::vector *result, std::vector bbox_num,
- bool is_rbox);
-
- std::shared_ptr predictor_;
- Preprocessor preprocessor_;
- ImageBlob inputs_;
- std::vector output_data_;
- std::vector out_bbox_num_data_;
- };
+cv::Mat VisualizeResult(const cv::Mat &img,
+ const std::vector &results,
+ const std::vector &lables,
+ const std::vector &colormap, const bool is_rbox);
+
+class ObjectDetector {
+public:
+ explicit ObjectDetector(const YAML::Node &config_file) {
+ this->use_gpu_ = config_file["Global"]["use_gpu"].as();
+ if (config_file["Global"]["gpu_id"].IsDefined())
+ this->gpu_id_ = config_file["Global"]["gpu_id"].as();
+ this->gpu_mem_ = config_file["Global"]["gpu_mem"].as();
+ this->cpu_math_library_num_threads_ =
+ config_file["Global"]["cpu_num_threads"].as();
+ this->use_mkldnn_ = config_file["Global"]["enable_mkldnn"].as();
+ this->use_tensorrt_ = config_file["Global"]["use_tensorrt"].as();
+ this->use_fp16_ = config_file["Global"]["use_fp16"].as();
+ this->model_dir_ =
+ config_file["Global"]["det_inference_model_dir"].as();
+ this->threshold_ = config_file["Global"]["threshold"].as();
+ this->max_det_results_ = config_file["Global"]["max_det_results"].as();
+ this->image_shape_ =
+ config_file["Global"]["image_shape"].as>();
+ this->label_list_ =
+ config_file["Global"]["label_list"].as>();
+ this->ir_optim_ = config_file["Global"]["ir_optim"].as();
+ this->batch_size_ = config_file["Global"]["batch_size"].as();
+
+ preprocessor_.Init(config_file["DetPreProcess"]["transform_ops"]);
+ LoadModel(model_dir_, batch_size_, run_mode);
+ }
+
+ // Load Paddle inference model
+ void LoadModel(const std::string &model_dir, const int batch_size = 1,
+ const std::string &run_mode = "fluid");
+
+ // Run predictor
+ void Predict(const std::vector imgs, const int warmup = 0,
+ const int repeats = 1,
+ std::vector *result = nullptr,
+ std::vector *bbox_num = nullptr,
+ std::vector *times = nullptr);
+
+ const std::vector &GetLabelList() const {
+ return this->label_list_;
+ }
+
+ const float &GetThreshold() const { return this->threshold_; }
+
+private:
+ bool use_gpu_ = true;
+ int gpu_id_ = 0;
+ int gpu_mem_ = 800;
+ int cpu_math_library_num_threads_ = 6;
+ std::string run_mode = "fluid";
+ bool use_mkldnn_ = false;
+ bool use_tensorrt_ = false;
+ bool batch_size_ = 1;
+ bool use_fp16_ = false;
+ std::string model_dir_;
+ float threshold_ = 0.5;
+ float max_det_results_ = 5;
+ std::vector image_shape_ = {3, 640, 640};
+ std::vector label_list_;
+ bool ir_optim_ = true;
+ bool det_permute_ = true;
+ bool det_postprocess_ = true;
+ int min_subgraph_size_ = 30;
+ bool use_dynamic_shape_ = false;
+ int trt_min_shape_ = 1;
+ int trt_max_shape_ = 1280;
+ int trt_opt_shape_ = 640;
+ bool trt_calib_mode_ = false;
+
+ // Preprocess image and copy data to input buffer
+ void Preprocess(const cv::Mat &image_mat);
+
+ // Postprocess result
+ void Postprocess(const std::vector mats,
+ std::vector *result, std::vector bbox_num,
+ bool is_rbox);
+
+ std::shared_ptr predictor_;
+ Preprocessor preprocessor_;
+ ImageBlob inputs_;
+ std::vector output_data_;
+ std::vector out_bbox_num_data_;
+};
} // namespace Detection
diff --git a/deploy/images/PULC/person/objects365_01780782.jpg b/deploy/images/PULC/person/objects365_01780782.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..a0dd0df59ae5a6386a04a8e0cf9cdbc529139c16
Binary files /dev/null and b/deploy/images/PULC/person/objects365_01780782.jpg differ
diff --git a/deploy/images/PULC/person/objects365_02035329.jpg b/deploy/images/PULC/person/objects365_02035329.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..16d7f2d08cd87bda1b67d21655f00f94a0c6e4e4
Binary files /dev/null and b/deploy/images/PULC/person/objects365_02035329.jpg differ
diff --git a/deploy/lite_shitu/generate_json_config.py b/deploy/lite_shitu/generate_json_config.py
index 37d06c47e686daf5335dbbf1a193658c4ac20ac3..642dfcd9d6a46e2894ec0f01f0914a5347bc8d72 100644
--- a/deploy/lite_shitu/generate_json_config.py
+++ b/deploy/lite_shitu/generate_json_config.py
@@ -95,7 +95,7 @@ def main():
config_json["Global"]["det_model_path"] = args.det_model_path
config_json["Global"]["rec_model_path"] = args.rec_model_path
config_json["Global"]["rec_label_path"] = args.rec_label_path
- config_json["Global"]["label_list"] = config_yaml["Global"]["labe_list"]
+ config_json["Global"]["label_list"] = config_yaml["Global"]["label_list"]
config_json["Global"]["rec_nms_thresold"] = config_yaml["Global"][
"rec_nms_thresold"]
config_json["Global"]["max_det_results"] = config_yaml["Global"][
diff --git a/deploy/python/postprocess.py b/deploy/python/postprocess.py
index d26cbaa9a8558ffb7f96115eef0a0bd9481fe47a..4f4d005fdff2bf17e04265e136443d0cd837f10e 100644
--- a/deploy/python/postprocess.py
+++ b/deploy/python/postprocess.py
@@ -53,6 +53,26 @@ class PostProcesser(object):
return rtn
+class ThreshOutput(object):
+ def __init__(self, threshold, label_0="0", label_1="1"):
+ self.threshold = threshold
+ self.label_0 = label_0
+ self.label_1 = label_1
+
+ def __call__(self, x, file_names=None):
+ y = []
+ for idx, probs in enumerate(x):
+ score = probs[1]
+ if score < self.threshold:
+ result = {"class_ids": [0], "scores": [1 - score], "label_names": [self.label_0]}
+ else:
+ result = {"class_ids": [1], "scores": [score], "label_names": [self.label_1]}
+ if file_names is not None:
+ result["file_name"] = file_names[idx]
+ y.append(result)
+ return y
+
+
class Topk(object):
def __init__(self, topk=1, class_id_map_file=None):
assert isinstance(topk, (int, ))
diff --git a/deploy/python/predict_cls.py b/deploy/python/predict_cls.py
index 574caa3e73bffee4fbf86224f5d91bc7965694b1..64c07ea875eaa2c456393328183b7270080a64d1 100644
--- a/deploy/python/predict_cls.py
+++ b/deploy/python/predict_cls.py
@@ -49,10 +49,15 @@ class ClsPredictor(Predictor):
pid = os.getpid()
size = config["PreProcess"]["transform_ops"][1]["CropImage"][
"size"]
+ if config["Global"].get("use_int8", False):
+ precision = "int8"
+ elif config["Global"].get("use_fp16", False):
+ precision = "fp16"
+ else:
+ precision = "fp32"
self.auto_logger = auto_log.AutoLogger(
model_name=config["Global"].get("model_name", "cls"),
- model_precision='fp16'
- if config["Global"]["use_fp16"] else 'fp32',
+ model_precision=precision,
batch_size=config["Global"].get("batch_size", 1),
data_shape=[3, size, size],
save_path=config["Global"].get("save_log_path",
diff --git a/deploy/python/predict_det.py b/deploy/python/predict_det.py
index e4e0a24a6dbc6c62f82810c865096f768ebd182b..37a7bf5018c3b5dc78e897b532303f70b0d3957d 100644
--- a/deploy/python/predict_det.py
+++ b/deploy/python/predict_det.py
@@ -128,13 +128,10 @@ class DetPredictor(Predictor):
results = []
if reduce(lambda x, y: x * y, np_boxes.shape) < 6:
print('[WARNNING] No object detected.')
- results = np.array([])
else:
- results = np_boxes
-
- results = self.parse_det_results(results,
- self.config["Global"]["threshold"],
- self.config["Global"]["labe_list"])
+ results = self.parse_det_results(
+ np_boxes, self.config["Global"]["threshold"],
+ self.config["Global"]["label_list"])
return results
diff --git a/deploy/utils/predictor.py b/deploy/utils/predictor.py
index 7fd1d6dccb61b86f1fece2e3a909c7005f93ca8a..9a38ccd18981c1ddd5dfc75152fa1d31f71d2b06 100644
--- a/deploy/utils/predictor.py
+++ b/deploy/utils/predictor.py
@@ -42,8 +42,22 @@ class Predictor(object):
def create_paddle_predictor(self, args, inference_model_dir=None):
if inference_model_dir is None:
inference_model_dir = args.inference_model_dir
- params_file = os.path.join(inference_model_dir, "inference.pdiparams")
- model_file = os.path.join(inference_model_dir, "inference.pdmodel")
+ if "inference_int8.pdiparams" in os.listdir(inference_model_dir):
+ params_file = os.path.join(inference_model_dir,
+ "inference_int8.pdiparams")
+ model_file = os.path.join(inference_model_dir,
+ "inference_int8.pdmodel")
+ assert args.get(
+ "use_fp16", False
+ ) is False, "fp16 mode is not supported for int8 model inference, please set use_fp16 as False during inference."
+ else:
+ params_file = os.path.join(inference_model_dir,
+ "inference.pdiparams")
+ model_file = os.path.join(inference_model_dir, "inference.pdmodel")
+ assert args.get(
+ "use_int8", False
+ ) is False, "int8 mode is not supported for fp32 model inference, please set use_int8 as False during inference."
+
config = Config(model_file, params_file)
if args.use_gpu:
@@ -63,12 +77,18 @@ class Predictor(object):
config.disable_glog_info()
config.switch_ir_optim(args.ir_optim) # default true
if args.use_tensorrt:
+ precision = Config.Precision.Float32
+ if args.get("use_int8", False):
+ precision = Config.Precision.Int8
+ elif args.get("use_fp16", False):
+ precision = Config.Precision.Half
+
config.enable_tensorrt_engine(
- precision_mode=Config.Precision.Half
- if args.use_fp16 else Config.Precision.Float32,
+ precision_mode=precision,
max_batch_size=args.batch_size,
workspace_size=1 << 30,
- min_subgraph_size=30)
+ min_subgraph_size=30,
+ use_calib_mode=False)
config.enable_memory_optim()
# use zero copy
diff --git a/docs/images/PP-HGNet/PP-HGNet-block.png b/docs/images/PP-HGNet/PP-HGNet-block.png
new file mode 100644
index 0000000000000000000000000000000000000000..56b6d6121739ade55c8f365d574c4de1180b8207
Binary files /dev/null and b/docs/images/PP-HGNet/PP-HGNet-block.png differ
diff --git a/docs/images/PP-HGNet/PP-HGNet.png b/docs/images/PP-HGNet/PP-HGNet.png
new file mode 100644
index 0000000000000000000000000000000000000000..cb5b18fe4e9decc14c68e9cee9aeeed172d3a844
Binary files /dev/null and b/docs/images/PP-HGNet/PP-HGNet.png differ
diff --git a/docs/images/PP-LCNetV2/net.png b/docs/images/PP-LCNetV2/net.png
new file mode 100644
index 0000000000000000000000000000000000000000..079f5ab43f2d0da67c49f1bf33d2648ab8d3f176
Binary files /dev/null and b/docs/images/PP-LCNetV2/net.png differ
diff --git a/docs/images/PP-LCNetV2/rep.png b/docs/images/PP-LCNetV2/rep.png
new file mode 100644
index 0000000000000000000000000000000000000000..0e94220fd7cb5b1732754d7102db830af62aaf30
Binary files /dev/null and b/docs/images/PP-LCNetV2/rep.png differ
diff --git a/docs/images/PP-LCNetV2/shortcut.png b/docs/images/PP-LCNetV2/shortcut.png
new file mode 100644
index 0000000000000000000000000000000000000000..d8024d48b20b9cac0c7cbddf12df799180ff82d6
Binary files /dev/null and b/docs/images/PP-LCNetV2/shortcut.png differ
diff --git a/docs/images/PP-LCNetV2/split_pw.png b/docs/images/PP-LCNetV2/split_pw.png
new file mode 100644
index 0000000000000000000000000000000000000000..f48800a173309e0ef9d998cc06764615db5bd4db
Binary files /dev/null and b/docs/images/PP-LCNetV2/split_pw.png differ
diff --git a/docs/zh_CN/PULC/PULC_person_cls.md b/docs/zh_CN/PULC/PULC_person_cls.md
new file mode 100644
index 0000000000000000000000000000000000000000..ff3508c35c3ff9394da9f5c82e0b4001ee8394a3
--- /dev/null
+++ b/docs/zh_CN/PULC/PULC_person_cls.md
@@ -0,0 +1,332 @@
+# PaddleClas构建有人/无人分类案例
+
+此处提供了用户使用 PaddleClas 快速构建轻量级、高精度、可落地的有人/无人的分类模型教程,主要基于有人/无人场景的数据,融合了轻量级骨干网络PPLCNet、SSLD预训练权重、EDA数据增强策略、SKL-UGI知识蒸馏策略、SHAS超参数搜索策略,得到精度高、速度快、易于部署的二分类模型。
+
+------
+
+
+## 目录
+
+- [1. 环境配置](#1)
+- [2. 有人/无人场景推理预测](#2)
+ - [2.1 下载模型](#2.1)
+ - [2.2 模型推理预测](#2.2)
+ - [2.2.1 预测单张图像](#2.2.1)
+ - [2.2.2 基于文件夹的批量预测](#2.2.2)
+- [3.有人/无人场景训练](#3)
+ - [3.1 数据准备](#3.1)
+ - [3.2 模型训练](#3.2)
+ - [3.2.1 基于默认超参数训练](#3.2.1)
+ - [3.2.1.1 基于默认超参数训练轻量级模型](#3.2.1.1)
+ - [3.2.1.2 基于默认超参数训练教师模型](#3.2.1.2)
+ - [3.2.1.3 基于默认超参数进行蒸馏训练](#3.2.1.3)
+ - [3.2.2 超参数搜索训练](#3.2)
+- [4. 模型评估与推理](#4)
+ - [4.1 模型评估](#3.1)
+ - [4.2 模型预测](#3.2)
+ - [4.3 使用 inference 模型进行推理](#4.3)
+ - [4.3.1 导出 inference 模型](#4.3.1)
+ - [4.3.2 模型推理预测](#4.3.2)
+
+
+
+
+## 1. 环境配置
+
+* 安装:请先参考 [Paddle 安装教程](../installation/install_paddle.md) 以及 [PaddleClas 安装教程](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
+
+
+
+## 2. 有人/无人场景推理预测
+
+
+
+### 2.1 下载模型
+
+* 进入 `deploy` 运行目录。
+
+```
+cd deploy
+```
+
+下载有人/无人分类的模型。
+
+```
+mkdir models
+cd models
+# 下载inference 模型并解压
+wget https://paddleclas.bj.bcebos.com/models/PULC/person_cls_infer.tar && tar -xf person_cls_infer.tar
+```
+
+解压完毕后,`models` 文件夹下应有如下文件结构:
+
+```
+├── person_cls_infer
+│ ├── inference.pdiparams
+│ ├── inference.pdiparams.info
+│ └── inference.pdmodel
+```
+
+
+
+### 2.2 模型推理预测
+
+
+
+#### 2.2.1 预测单张图像
+
+返回 `deploy` 目录:
+
+```
+cd ../
+```
+
+运行下面的命令,对图像 `./images/PULC/person/objects365_02035329.jpg` 进行有人/无人分类。
+
+```shell
+# 使用下面的命令使用 GPU 进行预测
+python3.7 python/predict_cls.py -c configs/PULC/person/inference_person_cls.yaml -o PostProcess.ThreshOutput.threshold=0.9794
+# 使用下面的命令使用 CPU 进行预测
+python3.7 python/predict_cls.py -c configs/PULC/person/inference_person_cls.yaml -o PostProcess.ThreshOutput.threshold=0.9794 -o Global.use_gpu=False
+```
+
+输出结果如下。
+
+```
+objects365_02035329.jpg: class id(s): [1], score(s): [1.00], label_name(s): ['someone']
+```
+
+
+**备注:** 真实场景中往往需要在假正类率(Fpr)小于某一个指标下求真正类率(Tpr),该场景中的`val`数据集在千分之一Fpr下得到的最佳Tpr所得到的阈值为`0.9794`,故此处的`threshold`为`0.9794`。该阈值的确定方法可以参考[3.2节](#3.2)
+
+
+
+#### 2.2.2 基于文件夹的批量预测
+
+如果希望预测文件夹内的图像,可以直接修改配置文件中的 `Global.infer_imgs` 字段,也可以通过下面的 `-o` 参数修改对应的配置。
+
+```shell
+# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False
+python3.7 python/predict_cls.py -c configs/PULC/person/inference_person_cls.yaml -o Global.infer_imgs="./images/PULC/person/"
+```
+
+终端中会输出该文件夹内所有图像的分类结果,如下所示。
+
+```
+objects365_01780782.jpg: class id(s): [0], score(s): [1.00], label_name(s): ['nobody']
+objects365_02035329.jpg: class id(s): [1], score(s): [1.00], label_name(s): ['someone']
+```
+
+其中,`someone` 表示该图里存在人,`nobody` 表示该图里不存在人。
+
+
+
+## 3.有人/无人场景训练
+
+
+
+### 3.1 数据准备
+
+进入 PaddleClas 目录。
+
+```
+cd path_to_PaddleClas
+```
+
+进入 `dataset/` 目录,下载并解压有人/无人场景的数据。
+
+```shell
+cd dataset
+wget https://paddleclas.bj.bcebos.com/data/cls_demo/person.tar
+tar -xf person.tar
+cd ../
+```
+
+执行上述命令后,`dataset/`下存在`person`目录,该目录中具有以下数据:
+
+```
+
+├── train
+│ ├── 000000000009.jpg
+│ ├── 000000000025.jpg
+...
+├── val
+│ ├── objects365_01780637.jpg
+│ ├── objects365_01780640.jpg
+...
+├── ImageNet_val
+│ ├── ILSVRC2012_val_00000001.JPEG
+│ ├── ILSVRC2012_val_00000002.JPEG
+...
+├── train_list.txt
+├── train_list.txt.debug
+├── train_list_for_distill.txt
+├── val_list.txt
+└── val_list.txt.debug
+```
+
+其中`train/`和`val/`分别为训练集和验证集。`train_list.txt`和`val_list.txt`分别为训练集和验证集的标签文件,`train_list.txt.debug`和`val_list.txt.debug`分别为训练集和验证集的`debug`标签文件,其分别是`train_list.txt`和`val_list.txt`的子集,用该文件可以快速体验本案例的流程。`ImageNet_val/`是ImageNet的验证集,该集合和`train`集合的混合数据用于本案例的`SKL-UGI知识蒸馏策略`,对应的训练标签文件为`train_list_for_distill.txt`。
+
+* **注意**:
+
+* 本案例中所使用的所有数据集均为开源数据,`train`集合为[MS-COCO数据](https://cocodataset.org/#overview)的训练集的子集,`val`集合为[Object365数据](https://www.objects365.org/overview.html)的训练集的子集,`ImageNet_val`为[ImageNet数据](https://www.image-net.org/)的验证集。数据集的筛选流程可以参考[有人/无人场景数据集筛选方法]()。
+
+
+
+### 3.2 模型训练
+
+
+
+#### 3.2.1 基于默认超参数训练
+
+
+
+##### 3.2.1.1 基于默认超参数训练轻量级模型
+
+在`ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml`中提供了基于该场景的训练配置,可以通过如下脚本启动训练:
+
+```shell
+export CUDA_VISIBLE_DEVICES=0,1,2,3
+python3 -m paddle.distributed.launch \
+ --gpus="0,1,2,3" \
+ tools/train.py \
+ -c ./ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml
+```
+
+验证集的最佳指标在0.94-0.95之间(数据集较小,容易造成波动)。
+
+**备注:**
+
+* 此时使用的指标为Tpr,该指标描述了在假正类率(Fpr)小于某一个指标时的真正类率(Tpr),是产业中二分类问题常用的指标之一。在本案例中,Fpr为千分之一。关于Fpr和Tpr的更多介绍,可以参考[这里](https://baike.baidu.com/item/AUC/19282953)。
+
+* 在eval时,会打印出来当前最佳的TprAtFpr指标,具体地,其会打印当前的`Fpr`、`Tpr`值,以及当前的`threshold`值,`Tpr`值反映了在当前`Fpr`值下的召回率,该值越高,代表模型越好。`threshold` 表示当前最佳`Fpr`所对应的分类阈值,可用于后续模型部署落地等。
+
+
+
+##### 3.2.1.2 基于默认超参数训练教师模型
+
+复用`ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml`中的超参数,训练教师模型,训练脚本如下:
+
+```shell
+export CUDA_VISIBLE_DEVICES=0,1,2,3
+python3 -m paddle.distributed.launch \
+ --gpus="0,1,2,3" \
+ tools/train.py \
+ -c ./ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml \
+ -o Arch.name=ResNet101_vd
+```
+
+验证集的最佳指标为0.96-0.98之间,当前教师模型最好的权重保存在`output/ResNet101_vd/best_model.pdparams`。
+
+
+
+##### 3.2.1.3 基于默认超参数进行蒸馏训练
+
+配置文件`ppcls/configs/PULC/PULC/Distillation/PPLCNet_x1_0_distillation.yaml`提供了`SKL-UGI知识蒸馏策略`的配置。该配置将`ResNet101_vd`当作教师模型,`PPLCNet_x1_0`当作学生模型,使用ImageNet数据集的验证集作为新增的无标签数据。训练脚本如下:
+
+```shell
+export CUDA_VISIBLE_DEVICES=0,1,2,3
+python3 -m paddle.distributed.launch \
+ --gpus="0,1,2,3" \
+ tools/train.py \
+ -c ./ppcls/configs/PULC/person/Distillation/PPLCNet_x1_0_distillation.yaml \
+ -o Arch.models.0.Teacher.pretrained=output/ResNet101_vd/best_model
+```
+
+验证集的最佳指标为0.95-0.97之间,当前模型最好的权重保存在`output/DistillationModel/best_model_student.pdparams`。
+
+
+
+#### 3.2.2 超参数搜索训练
+
+[3.2 小节](#3.2) 提供了在已经搜索并得到的超参数上进行了训练,此部分内容提供了搜索的过程,此过程是为了得到更好的训练超参数。
+
+* 搜索运行脚本如下:
+
+```shell
+python tools/search_strategy.py -c ppcls/configs/StrategySearch/person.yaml
+```
+
+在`ppcls/configs/StrategySearch/person.yaml`中指定了具体的 GPU id 号和搜索配置, 默认搜索的训练日志和模型存放于`output/search_person`中,最终的蒸馏模型存放于`output/search_person/search_res/DistillationModel/best_model_student.pdparams`。
+
+* **注意**:
+
+* 3.1小节提供的默认配置已经经过了搜索,所以此过程不是必要的过程,如果自己的训练数据集有变化,可以尝试此过程。
+
+* 此过程基于当前数据集在 V100 4 卡上大概需要耗时 10 小时,如果缺少机器资源,希望体验搜索过程,可以将`ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0_search.yaml`中的`train_list.txt`和`val_list.txt`分别替换为`train_list.txt.debug`和`val_list.txt.debug`。替换list只是为了加速跑通整个搜索过程,由于数据量较小,其搜素的结果没有参考性。另外,搜索空间可以根据当前的机器资源来调整,如果机器资源有限,可以尝试缩小搜索空间,如果机器资源较充足,可以尝试扩大搜索空间。
+
+* 如果此过程搜索的得到的超参数与[3.2.1小节](#3.2.1)提供的超参数不一致,主要是由于训练数据较小造成的波动导致,可以忽略。
+
+
+
+
+## 4. 模型评估与推理
+
+
+
+
+### 4.1 模型评估
+
+训练好模型之后,可以通过以下命令实现对模型指标的评估。
+
+```bash
+python3 tools/eval.py \
+ -c ./ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml \
+ -o Global.pretrained_model="output/DistillationModel/best_model_student"
+```
+
+
+
+### 4.2 模型预测
+
+模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 `tools/infer.py` 中提供了完整的示例,只需执行下述命令即可完成模型预测:
+
+```python
+python3 tools/infer.py \
+ -c ./ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml \
+ -o Infer.infer_imgs=./dataset/person/val/objects365_01780637.jpg \
+ -o Global.pretrained_model=output/DistillationModel/best_model_student \
+ -o Global.pretrained_model=Infer.PostProcess.threshold=0.9794
+```
+
+输出结果如下:
+
+```
+[{'class_ids': [0], 'scores': [0.9878496769815683], 'label_names': ['nobody'], 'file_name': './dataset/person/val/objects365_01780637.jpg'}]
+```
+
+**备注:** 这里的`Infer.PostProcess.threshold`的值需要根据实际场景来确定,此处的`0.9794`是在该场景中的`val`数据集在千分之一Fpr下得到的最佳Tpr所得到的。
+
+
+
+### 4.3 使用 inference 模型进行推理
+
+
+
+### 4.3.1 导出 inference 模型
+
+通过导出 inference 模型,PaddlePaddle 支持使用预测引擎进行预测推理。接下来介绍如何用预测引擎进行推理:
+首先,对训练好的模型进行转换:
+
+```bash
+python3 tools/export_model.py \
+ -c ./ppcls/configs/cls_demo/PULC/PPLCNet/PPLCNet_x1_0.yaml \
+ -o Global.pretrained_model=output/DistillationModel/best_model_student \
+ -o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_person
+```
+执行完该脚本后会在`deploy/models/`下生成`PPLCNet_x1_0_person`文件夹,该文件夹中的模型与 2.2 节下载的推理预测模型格式一致。
+
+
+
+### 4.3.2 基于 inference 模型推理预测
+推理预测的脚本为:
+
+```
+python3.7 python/predict_cls.py -c configs/PULC/person/inference_person_cls.yaml -o Global.inference_model_dir="models/PPLCNet_x1_0_person" -o PostProcess.ThreshOutput.threshold=0.9794
+```
+
+**备注:**
+
+- 此处的`PostProcess.ThreshOutput.threshold`由eval时的最佳`threshold`来确定。
+- 更多关于推理的细节,可以参考[2.2节](#2.2)。
+
diff --git a/docs/zh_CN/algorithm_introduction/ImageNet_models.md b/docs/zh_CN/algorithm_introduction/ImageNet_models.md
index ee98de442a40fb7c37b2274b756a728f7dcfc5af..8e847bb8c17db46e71e8542b954fdf49e8cd549d 100644
--- a/docs/zh_CN/algorithm_introduction/ImageNet_models.md
+++ b/docs/zh_CN/algorithm_introduction/ImageNet_models.md
@@ -5,40 +5,41 @@
## 目录
-- [1. 模型库概览图](#1)
-- [2. SSLD 知识蒸馏预训练模型](#2)
- - [2.1 服务器端知识蒸馏模型](#2.1)
- - [2.2 移动端知识蒸馏模型](#2.2)
- - [2.3 Intel CPU 端知识蒸馏模型](#2.3)
-- [3. PP-LCNet 系列](#3)
-- [4. ResNet 系列](#4)
-- [5. 移动端系列](#5)
-- [6. SEResNeXt 与 Res2Net 系列](#6)
-- [7. DPN 与 DenseNet 系列](#7)
-- [8. HRNet 系列](#8)
-- [9. Inception 系列](#9)
-- [10. EfficientNet 与 ResNeXt101_wsl 系列](#10)
-- [11. ResNeSt 与 RegNet 系列](#11)
-- [12. ViT_and_DeiT 系列](#12)
-- [13. RepVGG 系列](#13)
-- [14. MixNet 系列](#14)
-- [15. ReXNet 系列](#15)
-- [16. SwinTransformer 系列](#16)
-- [17. LeViT 系列](#17)
-- [18. Twins 系列](#18)
-- [19. HarDNet 系列](#19)
-- [20. DLA 系列](#20)
-- [21. RedNet 系列](#21)
-- [22. TNT 系列](#22)
-- [23. CSwinTransformer 系列](#23)
-- [24. PVTV2 系列](#24)
-- [25. MobileViT 系列](#25)
-- [26. 其他模型](#26)
+- [模型库概览图](#Overview)
+- [SSLD 知识蒸馏预训练模型](#SSLD)
+ - [服务器端知识蒸馏模型](#SSLD_server)
+ - [移动端知识蒸馏模型](#SSLD_mobile)
+ - [Intel CPU 端知识蒸馏模型](#SSLD_intel_cpu)
+- [PP-LCNet & PP-LCNetV2 系列](#PPLCNet)
+- [PP-HGNet 系列](#PPHGNet)
+- [ResNet 系列](#ResNet)
+- [移动端系列](#Mobile)
+- [SEResNeXt 与 Res2Net 系列](#SEResNeXt_Res2Net)
+- [DPN 与 DenseNet 系列](#DPN&DenseNet)
+- [HRNet 系列](#HRNet)
+- [Inception 系列](#Inception)
+- [EfficientNet 与 ResNeXt101_wsl 系列](#EfficientNetRes&NeXt101_wsl)
+- [ResNeSt 与 RegNet 系列](#ResNeSt&RegNet)
+- [ViT_and_DeiT 系列](#ViT&DeiT)
+- [RepVGG 系列](#RepVGG)
+- [MixNet 系列](#MixNet)
+- [ReXNet 系列](#ReXNet)
+- [SwinTransformer 系列](#SwinTransformer)
+- [LeViT 系列](#LeViT)
+- [Twins 系列](#Twins)
+- [HarDNet 系列](#HarDNet)
+- [DLA 系列](#DLA)
+- [RedNet 系列](#RedNet)
+- [TNT 系列](#TNT)
+- [CSwinTransformer 系列](#CSwinTransformer)
+- [PVTV2 系列](#PVTV2)
+- [MobileViT 系列](#MobileViT)
+- [其他模型](#Others)
- [参考文献](#reference)
-
+
-## 1. 模型库概览图
+## 模型库概览图
基于 ImageNet1k 分类数据集,PaddleClas 支持 37 个系列分类网络结构以及对应的 217 个图像分类预训练模型,训练技巧、每个系列网络结构的简单介绍和性能评估将在相应章节展现,下面所有的速度指标评估环境如下:
* Arm CPU 的评估环境基于骁龙 855(SD855)。
@@ -58,14 +59,14 @@
![](../../images/models/V100_benchmark/v100.fp32.bs1.visiontransformer.png)
-
+
-## 2. SSLD 知识蒸馏预训练模型
+## SSLD 知识蒸馏预训练模型
基于 SSLD 知识蒸馏的预训练模型列表如下所示,更多关于 SSLD 知识蒸馏方案的介绍可以参考:[SSLD 知识蒸馏文档](./knowledge_distillation.md)。
-
+
-### 2.1 服务器端知识蒸馏模型
+### 服务器端知识蒸馏模型
| 模型 | Top-1 Acc | Reference
Top-1 Acc | Acc gain | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|-----------------------------------|-----------------------------------|
@@ -78,10 +79,12 @@
| HRNet_W18_C_ssld | 0.812 | 0.769 | 0.043 | 6.66 | 8.94 | 11.95 | 4.32 | 21.35 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W18_C_ssld_infer.tar) |
| HRNet_W48_C_ssld | 0.836 | 0.790 | 0.046 | 11.07 | 17.06 | 27.28 | 17.34 | 77.57 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W48_C_ssld_infer.tar) |
| SE_HRNet_W64_C_ssld | 0.848 | - | - | 17.11 | 26.87 | 43.24 | 29.00 | 129.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_HRNet_W64_C_ssld_infer.tar) |
+| PPHGNet_tiny_ssld | 0.8195 | 0.7983 | 0.021 | 1.77 | - | - | 4.54 | 14.75 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_tiny_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_tiny_ssld_infer.tar) |
+| PPHGNet_small_ssld | 0.8382 | 0.8151 | 0.023 | 2.52 | - | - | 8.53 | 24.38 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_small_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_small_ssld_infer.tar) |
-
+
-### 2.2 移动端知识蒸馏模型
+### 移动端知识蒸馏模型
| 模型 | Top-1 Acc | Reference
Top-1 Acc | Acc gain | SD855 time(ms)
bs=1, thread=1 | SD855 time(ms)
bs=1, thread=2 | SD855 time(ms)
bs=1, thread=4 | FLOPs(M) | Params(M) | 模型大小(M) | 预训练模型下载地址 | inference模型下载地址 |
|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
@@ -92,9 +95,9 @@
| MobileNetV3_small_x1_0_ssld | 0.713 | 0.682 | 0.031 | 5.63 | 3.65 | 2.60 | 63.67 | 2.95 | 12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x1_0_ssld_infer.tar) |
| GhostNet_x1_3_ssld | 0.794 | 0.757 | 0.037 | 19.16 | 12.25 | 9.40 | 236.89 | 7.38 | 29 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GhostNet_x1_3_ssld_infer.tar) |
-
+
-### 2.3 Intel CPU 端知识蒸馏模型
+### Intel CPU 端知识蒸馏模型
| 模型 | Top-1 Acc | Reference
Top-1 Acc | Acc gain | Intel-Xeon-Gold-6148 time(ms)
bs=1 | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|---------------------|-----------|-----------|---------------|----------------|----------|-----------|-----------------------------------|-----------------------------------|
@@ -104,26 +107,44 @@
* 注: `Reference Top-1 Acc` 表示 PaddleClas 基于 ImageNet1k 数据集训练得到的预训练模型精度。
-
+
-## 3. PP-LCNet 系列 [[28](#ref28)]
+## PP-LCNet & PP-LCNetV2 系列 [[28](#ref28)]
-PP-LCNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[PP-LCNet 系列模型文档](../models/PP-LCNet.md)。
+PP-LCNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[PP-LCNet 系列模型文档](../models/PP-LCNet.md),[PP-LCNetV2 系列模型文档](../models/PP-LCNetV2.md)。
-| 模型 | Top-1 Acc | Top-5 Acc | Intel-Xeon-Gold-6148 time(ms)
bs=1 | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
+| 模型 | Top-1 Acc | Top-5 Acc | time(ms)*
bs=1 | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|:--:|:--:|:--:|:--:|----|----|----|:--:|
-| PPLCNet_x0_25 |0.5186 | 0.7565 | 1.61785 | 18.25 | 1.52 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_25_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_25_infer.tar) |
-| PPLCNet_x0_35 |0.5809 | 0.8083 | 2.11344 | 29.46 | 1.65 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_35_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_35_infer.tar) |
-| PPLCNet_x0_5 |0.6314 | 0.8466 | 2.72974 | 47.28 | 1.89 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_5_infer.tar) |
-| PPLCNet_x0_75 |0.6818 | 0.8830 | 4.51216 | 98.82 | 2.37 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_75_infer.tar) |
-| PPLCNet_x1_0 |0.7132 | 0.9003 | 6.49276 | 160.81 | 2.96 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x1_0_infer.tar) |
-| PPLCNet_x1_5 |0.7371 | 0.9153 | 12.2601 | 341.86 | 4.52 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x1_5_infer.tar) |
-| PPLCNet_x2_0 |0.7518 | 0.9227 | 20.1667 | 590 | 6.54 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x2_0_infer.tar) |
-| PPLCNet_x2_5 |0.7660 | 0.9300 | 29.595 | 906 | 9.04 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x2_5_infer.tar) |
+| PPLCNet_x0_25 |0.5186 | 0.7565 | 1.74 | 18.25 | 1.52 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_25_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_25_infer.tar) |
+| PPLCNet_x0_35 |0.5809 | 0.8083 | 1.92 | 29.46 | 1.65 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_35_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_35_infer.tar) |
+| PPLCNet_x0_5 |0.6314 | 0.8466 | 2.05 | 47.28 | 1.89 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_5_infer.tar) |
+| PPLCNet_x0_75 |0.6818 | 0.8830 | 2.29 | 98.82 | 2.37 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_75_infer.tar) |
+| PPLCNet_x1_0 |0.7132 | 0.9003 | 2.46 | 160.81 | 2.96 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x1_0_infer.tar) |
+| PPLCNet_x1_5 |0.7371 | 0.9153 | 3.19 | 341.86 | 4.52 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x1_5_infer.tar) |
+| PPLCNet_x2_0 |0.7518 | 0.9227 | 4.27 | 590 | 6.54 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x2_0_infer.tar) |
+| PPLCNet_x2_5 |0.7660 | 0.9300 | 5.39 | 906 | 9.04 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x2_5_infer.tar) |
+
+| 模型 | Top-1 Acc | Top-5 Acc | time(ms)**
bs=1 | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
+|:--:|:--:|:--:|:--:|----|----|----|:--:|
+| PPLCNetV2_base | 77.04 | 93.27 | 4.32 | 604 | 6.6 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNetV2_base_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNetV2_base_infer.tar) |
+
+
+*: 基于 Intel-Xeon-Gold-6148 硬件平台与 PaddlePaddle 推理平台。
+
+**: 基于 Intel-Xeon-Gold-6271C 硬件平台与 OpenVINO 2021.4.2 推理平台。
+
+## PP-HGNet 系列
+
+PP-HGNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[PP-HGNet 系列模型文档](../models/PP-HGNet.md)。
+
+| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
+| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
+| PPHGNet_tiny | 0.7983 | 0.9504 | 1.77 | - | - | 4.54 | 14.75 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_tiny_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_tiny_infer.tar) |
+| PPHGNet_small | 0.8151 | 0.9582 | 2.52 | - | - | 8.53 | 24.38 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_small_infer.tar) |
-
+
-## 4. ResNet 系列 [[1](#ref1)]
+## ResNet 系列 [[1](#ref1)]
ResNet 及其 Vd 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[ResNet 及其 Vd 系列模型文档](../models/ResNet_and_vd.md)。
@@ -145,9 +166,9 @@ ResNet 及其 Vd 系列模型的精度、速度指标如下表所示,更多关
| ResNet50_vd_
ssld | 0.8300 | 0.9640 | 2.60 | 4.86 | 7.63 | 4.35 | 25.63 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_ssld_infer.tar) |
| ResNet101_vd_
ssld | 0.8373 | 0.9669 | 4.43 | 8.25 | 12.60 | 8.08 | 44.67 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_vd_ssld_infer.tar) |
-
+
-## 5. 移动端系列 [[3](#ref3)][[4](#ref4)][[5](#ref5)][[6](#ref6)][[23](#ref23)]
+## 移动端系列 [[3](#ref3)][[4](#ref4)][[5](#ref5)][[6](#ref6)][[23](#ref23)]
移动端系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[移动端系列模型文档](../models/Mobile.md)。
@@ -194,9 +215,9 @@ ResNet 及其 Vd 系列模型的精度、速度指标如下表所示,更多关
| ESNet_x0_75 | 0.7224 | 0.9045 |9.59|6.28|4.52| 123.74 | 3.87 | 15 |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_75_pretrained.pdparams) |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ESNet_x0_75_infer.tar) |
| ESNet_x1_0 | 0.7392 | 0.9140 |13.67|8.71|5.97| 197.33 | 4.64 | 18 |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x1_0_pretrained.pdparams) |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ESNet_x1_0_infer.tar) |
-
+
-## 6. SEResNeXt 与 Res2Net 系列 [[7](#ref7)][[8](#ref8)][[9](#ref9)]
+## SEResNeXt 与 Res2Net 系列 [[7](#ref7)][[8](#ref8)][[9](#ref9)]
SEResNeXt 与 Res2Net 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[SEResNeXt 与 Res2Net 系列模型文档](../models/SEResNext_and_Res2Net.md)。
@@ -229,9 +250,9 @@ SEResNeXt 与 Res2Net 系列模型的精度、速度指标如下表所示,更
| SE_ResNeXt101_
32x4d | 0.7939 | 0.9443 | 13.31 | 21.85 | 28.77 | 8.03 | 49.09 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt101_32x4d_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNeXt101_32x4d_infer.tar) |
| SENet154_vd | 0.8140 | 0.9548 | 34.83 | 51.22 | 69.74 | 24.45 | 122.03 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SENet154_vd_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SENet154_vd_infer.tar) |
-
+
-## 7. DPN 与 DenseNet 系列 [[14](#ref14)][[15](#ref15)]
+## DPN 与 DenseNet 系列 [[14](#ref14)][[15](#ref15)]
DPN 与 DenseNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[DPN 与 DenseNet 系列模型文档](../models/DPN_DenseNet.md)。
@@ -249,9 +270,9 @@ DPN 与 DenseNet 系列模型的精度、速度指标如下表所示,更多关
| DPN107 | 0.8089 | 0.9532 | 19.46 | 35.62 | 50.22 | 18.38 | 87.13 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN107_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN107_infer.tar) |
| DPN131 | 0.8070 | 0.9514 | 19.64 | 34.60 | 47.42 | 16.09 | 79.48 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN131_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN131_infer.tar) |
-
+
-## 8. HRNet 系列 [[13](#ref13)]
+## HRNet 系列 [[13](#ref13)]
HRNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[HRNet 系列模型文档](../models/HRNet.md)。
@@ -268,9 +289,9 @@ HRNet 系列模型的精度、速度指标如下表所示,更多关于该系
| HRNet_W64_C | 0.7930 | 0.9461 | 13.82 | 21.15 | 35.51 | 28.97 | 128.18 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W64_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W64_C_infer.tar) |
| SE_HRNet_W64_C_ssld | 0.8475 | 0.9726 | 17.11 | 26.87 | 43.24 | 29.00 | 129.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_HRNet_W64_C_ssld_infer.tar) |
-
+
-## 9. Inception 系列 [[10](#ref10)][[11](#ref11)][[12](#ref12)][[26](#ref26)]
+## Inception 系列 [[10](#ref10)][[11](#ref11)][[12](#ref12)][[26](#ref26)]
Inception 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[Inception 系列模型文档](../models/Inception.md)。
@@ -285,9 +306,9 @@ Inception 系列模型的精度、速度指标如下表所示,更多关于该
| InceptionV3 | 0.7914 | 0.9459 | 4.78 | 8.53 | 12.28 | 5.73 | 23.87 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/InceptionV3_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/InceptionV3_infer.tar) |
| InceptionV4 | 0.8077 | 0.9526 | 8.93 | 15.17 | 21.56 | 12.29 | 42.74 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV4_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/InceptionV4_infer.tar) |
-
+
-## 10. EfficientNet 与 ResNeXt101_wsl 系列 [[16](#ref16)][[17](#ref17)]
+## EfficientNet 与 ResNeXt101_wsl 系列 [[16](#ref16)][[17](#ref17)]
EfficientNet 与 ResNeXt101_wsl 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[EfficientNet 与 ResNeXt101_wsl 系列模型文档](../models/EfficientNet_and_ResNeXt101_wsl.md)。
@@ -308,9 +329,9 @@ EfficientNet 与 ResNeXt101_wsl 系列模型的精度、速度指标如下表所
| EfficientNetB7 | 0.8430 | 0.9689 | 25.91 | 71.23 | 128.20 | 38.45 | 66.66 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB7_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB7_infer.tar) |
| EfficientNetB0_
small | 0.7580 | 0.9258 | 1.24 | 2.59 | 3.92 | 0.40 | 4.69 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB0_small_infer.tar) |
-
+
-## 11. ResNeSt 与 RegNet 系列 [[24](#ref24)][[25](#ref25)]
+## ResNeSt 与 RegNet 系列 [[24](#ref24)][[25](#ref25)]
ResNeSt 与 RegNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[ResNeSt 与 RegNet 系列模型文档](../models/ResNeSt_RegNet.md)。
@@ -320,9 +341,9 @@ ResNeSt 与 RegNet 系列模型的精度、速度指标如下表所示,更多
| ResNeSt50 | 0.8083 | 0.9542 | 7.36 | 10.23 | 13.84 | 5.40 | 27.54 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt50_infer.tar) |
| RegNetX_4GF | 0.785 | 0.9416 | 6.46 | 8.48 | 11.45 | 4.00 | 22.23 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_4GF_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_4GF_infer.tar) |
-
+
-## 12. ViT_and_DeiT 系列 [[31](#ref31)][[32](#ref32)]
+## ViT_and_DeiT 系列 [[31](#ref31)][[32](#ref32)]
ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模型的精度、速度指标如下表所示. 更多关于该系列模型的介绍可以参考: [ViT_and_DeiT 系列模型文档](../models/ViT_and_DeiT.md)。
@@ -347,9 +368,9 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
| DeiT_base_
distilled_patch16_224 | 0.831 | 0.964 | 6.17 | 14.94 | 28.58 | 16.93 | 87.18 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_224_infer.tar) |
| DeiT_base_
distilled_patch16_384 | 0.851 | 0.973 | 14.12 | 48.76 | 97.09 | 49.43 | 87.18 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_384_infer.tar) |
-
+
-## 13. RepVGG 系列 [[36](#ref36)]
+## RepVGG 系列 [[36](#ref36)]
关于 RepVGG 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[RepVGG 系列模型文档](../models/RepVGG.md)。
@@ -366,9 +387,9 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
| RepVGG_B2g4 | 0.7881 | 0.9448 | | | | 11.34 | 55.78 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2g4_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B2g4_infer.tar) |
| RepVGG_B3g4 | 0.7965 | 0.9485 | | | | 16.07 | 75.63 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B3g4_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B3g4_infer.tar) |
-
+
-## 14. MixNet 系列 [[29](#ref29)]
+## MixNet 系列 [[29](#ref29)]
关于 MixNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[MixNet 系列模型文档](../models/MixNet.md)。
@@ -378,9 +399,9 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
| MixNet_M | 0.7767 | 0.9364 | 2.84 | 4.60 | 6.62 | 357.119 | 5.065 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_M_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MixNet_M_infer.tar) |
| MixNet_L | 0.7860 | 0.9437 | 3.16 | 5.55 | 8.03 | 579.017 | 7.384 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_L_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MixNet_L_infer.tar) |
-
+
-## 15. ReXNet 系列 [[30](#ref30)]
+## ReXNet 系列 [[30](#ref30)]
关于 ReXNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[ReXNet 系列模型文档](../models/ReXNet.md)。
@@ -392,9 +413,9 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
| ReXNet_2_0 | 0.8122 | 0.9536 | 4.30 | 6.54 | 9.19 | 1.56 | 16.45 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_2_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_2_0_infer.tar) |
| ReXNet_3_0 | 0.8209 | 0.9612 | 5.74 | 9.49 | 13.62 | 3.44 | 34.83 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_3_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_3_0_infer.tar) |
-
+
-## 16. SwinTransformer 系列 [[27](#ref27)]
+## SwinTransformer 系列 [[27](#ref27)]
关于 SwinTransformer 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[SwinTransformer 系列模型文档](../models/SwinTransformer.md)。
@@ -411,9 +432,9 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
[1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。
-
+
-## 17. LeViT 系列 [[33](#ref33)]
+## LeViT 系列 [[33](#ref33)]
关于 LeViT 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[LeViT 系列模型文档](../models/LeViT.md)。
@@ -427,9 +448,9 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
**注**:与 Reference 的精度差异源于数据预处理不同及未使用蒸馏的 head 作为输出。
-
+
-## 18. Twins 系列 [[34](#ref34)]
+## Twins 系列 [[34](#ref34)]
关于 Twins 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[Twins 系列模型文档](../models/Twins.md)。
@@ -444,9 +465,9 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
**注**:与 Reference 的精度差异源于数据预处理不同。
-
+
-## 19. HarDNet 系列 [[37](#ref37)]
+## HarDNet 系列 [[37](#ref37)]
关于 HarDNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[HarDNet 系列模型文档](../models/HarDNet.md)。
@@ -457,9 +478,9 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
| HarDNet68| 0.7546 | 0.9265 | 3.58 | 8.53 | 11.58 | 4.26 | 17.58 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet68_infer.tar) |
| HarDNet85 | 0.7744 | 0.9355 | 6.24 | 14.85 | 20.57 | 9.09 | 36.69 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet85_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet85_infer.tar) |
-
+
-## 20. DLA 系列 [[38](#ref38)]
+## DLA 系列 [[38](#ref38)]
关于 DLA 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[DLA 系列模型文档](../models/DLA.md)。
@@ -475,9 +496,9 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
| DLA60x_c | 0.6645 | 0.8754 | 1.79 | 3.68 | 5.19 | 0.59 | 1.33 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_c_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA60x_c_infer.tar) |
| DLA60x | 0.7753 | 0.9378 | 5.98 | 9.24 | 12.52 | 3.54 | 17.41 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA60x_infer.tar) |
-
+
-## 21. RedNet 系列 [[39](#ref39)]
+## RedNet 系列 [[39](#ref39)]
关于 RedNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[RedNet 系列模型文档](../models/RedNet.md)。
@@ -489,9 +510,9 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
| RedNet101 | 0.7894 | 0.9436 | 13.07 | 44.12 | 83.28 | 4.59 | 25.76 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet101_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet101_infer.tar) |
| RedNet152 | 0.7917 | 0.9440 | 18.66 | 63.27 | 119.48 | 6.57 | 34.14 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet152_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet152_infer.tar) |
-
+
-## 22. TNT 系列 [[35](#ref35)]
+## TNT 系列 [[35](#ref35)]
关于 TNT 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[TNT 系列模型文档](../models/TNT.md)。
@@ -501,9 +522,9 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
**注**:TNT 模型的数据预处理部分 `NormalizeImage` 中的 `mean` 与 `std` 均为 0.5。
-
+
-## 23. CSWinTransformer 系列 [[40](#ref40)]
+## CSWinTransformer 系列 [[40](#ref40)]
关于 CSWinTransformer 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[CSWinTransformer 系列模型文档](../models/CSWinTransformer.md)。
@@ -517,9 +538,9 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
| CSWinTransformer_large_384 | 0.8748 | 0.9833 | - | - | - | 94.7 | 173.3 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSWinTransformer_large_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/CSWinTransformer_large_384_infer.tar) |
-
+
-## 24. PVTV2 系列 [[41](#ref41)]
+## PVTV2 系列 [[41](#ref41)]
关于 PVTV2 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[PVTV2 系列模型文档](../models/PVTV2.md)。
@@ -534,9 +555,9 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
| PVT_V2_B5 | 0.837 | 0.966 | - | - | - | 11.4 | 82.0 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B5_infer.tar) |
-
+
-## 25. MobileViT 系列 [[42](#ref42)]
+## MobileViT 系列 [[42](#ref42)]
关于 MobileViT 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[MobileViT 系列模型文档](../models/MobileViT.md)。
@@ -546,9 +567,9 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
| MobileViT_XS | 0.7454 | 0.9227 | - | - | - | 930.75 | 2.33 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_XS_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_XS_infer.tar) |
| MobileViT_S | 0.7814 | 0.9413 | - | - | - | 337.24 | 1.28 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_S_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_S_infer.tar) |
-
+
-## 26. 其他模型
+## 其他模型
关于 AlexNet [[18](#ref18)]、SqueezeNet 系列 [[19](#ref19)]、VGG 系列 [[20](#ref20)]、DarkNet53 [[21](#ref21)] 等模型的精度、速度指标如下表所示,更多介绍可以参考:[其他模型文档](../models/Others.md)。
diff --git a/docs/zh_CN/models/PP-HGNet.md b/docs/zh_CN/models/PP-HGNet.md
new file mode 100644
index 0000000000000000000000000000000000000000..d4b4a975d105f632a46c75a78b89089bdb1590e0
--- /dev/null
+++ b/docs/zh_CN/models/PP-HGNet.md
@@ -0,0 +1,51 @@
+# PP-HGNet 系列
+---
+## 目录
+
+* [1. 概述](#1)
+* [2. 结构信息](#2)
+* [3. 实验结果](#3)
+
+
+
+## 1. 概述
+
+PP-HGNet(High Performance GPU Net) 是百度飞桨视觉团队自研的更适用于 GPU 平台的高性能骨干网络,该网络在 VOVNet 的基础上使用了可学习的下采样层(LDS Layer),融合了 ResNet_vd、PPLCNet 等模型的优点,该模型在 GPU 平台上与其他 SOTA 模型在相同的速度下有着更高的精度。在同等速度下,该模型高于 ResNet34-D 模型 3.8 个百分点,高于 ResNet50-D 模型 2.4 个百分点,在使用百度自研 SSLD 蒸馏策略后,超越 ResNet50-D 模型 4.7 个百分点。与此同时,在相同精度下,其推理速度也远超主流 VisionTransformer 的推理速度。
+
+
+
+## 2. 结构信息
+
+PP-HGNet 作者针对 GPU 设备,对目前 GPU 友好的网络做了分析和归纳,尽可能多的使用 3x3 标准卷积(计算密度最高)。在此将 VOVNet 作为基准模型,将主要的有利于 GPU 推理的改进点进行融合。从而得到一个有利于 GPU 推理的骨干网络,同样速度下,精度大幅超越其他 CNN 或者 VisionTransformer 模型。
+
+PP-HGNet 骨干网络的整体结构如下:
+
+![](../../images/PP-HGNet/PP-HGNet.png)
+
+其中,PP-HGNet是由多个HG-Block组成,HG-Block的细节如下:
+
+![](../../images/PP-HGNet/PP-HGNet-block.png)
+
+
+
+## 3. 实验结果
+
+PP-HGNet 与其他模型的比较如下,其中测试机器为 NVIDIA® Tesla® V100,开启 TensorRT 引擎,精度类型为 FP32。在相同速度下,PP-HGNet 精度均超越了其他 SOTA CNN 模型,在与 SwinTransformer 模型的比较中,在更高精度的同时,速度快 2 倍以上。
+
+| Model | Top-1 Acc(\%) | Top-5 Acc(\%) | Latency(ms) |
+|-------|---------------|---------------|-------------|
+| ResNet34 | 74.57 | 92.14 | 1.97 |
+| ResNet34_vd | 75.98 | 92.98 | 2.00 |
+| EfficientNetB0 | 77.38 | 93.31 | 1.96 |
+| PPHGNet_tiny | 79.83 | 95.04 | 1.77 |
+| PPHGNet_tiny_ssld | 81.95 | 96.12 | 1.77 |
+| ResNet50 | 76.50 | 93.00 | 2.54 |
+| ResNet50_vd | 79.12 | 94.44 | 2.60 |
+| ResNet50_rsb | 80.40 | | 2.54 |
+| EfficientNetB1 | 79.15 | 94.41 | 2.88 |
+| SwinTransformer_tiny | 81.2 | 95.5 | 6.59 |
+| PPHGNet_small | 81.51| 95.82 | 2.52 |
+| PPHGNet_small_ssld | 83.82| 96.81 | 2.52 |
+
+
+关于更多 PP-HGNet 的介绍以及下游任务的表现,敬请期待。
diff --git a/docs/zh_CN/models/PP-LCNetV2.md b/docs/zh_CN/models/PP-LCNetV2.md
new file mode 100644
index 0000000000000000000000000000000000000000..362bac6f62957ae484a15a7f1b396e86d593214f
--- /dev/null
+++ b/docs/zh_CN/models/PP-LCNetV2.md
@@ -0,0 +1,53 @@
+# PP-LCNetV2
+
+---
+
+## 1. 概述
+
+骨干网络对计算机视觉下游任务的影响不言而喻,不仅对下游模型的性能影响很大,而且模型效率也极大地受此影响,但现有的大多骨干网络在真实应用中的效率并不理想,特别是缺乏针对 Intel CPU 平台所优化的骨干网络,我们测试了现有的主流轻量级模型,发现在 Intel CPU 平台上的效率并不理想,然而目前 Intel CPU 平台在工业界仍有大量使用场景,因此我们提出了 PP-LCNet 系列模型,PP-LCNetV2 是在 [PP-LCNetV1](./PP-LCNet.md) 基础上所改进的。
+
+## 2. 设计细节
+
+![](../../images/PP-LCNetV2/net.png)
+
+PP-LCNetV2 模型的网络整体结构如上图所示。PP-LCNetV2 模型是在 PP-LCNetV1 的基础上优化而来,主要使用重参数化策略组合了不同大小卷积核的深度卷积,并优化了点卷积、Shortcut等。
+
+### 2.1 Rep 策略
+
+卷积核的大小决定了卷积层感受野的大小,通过组合使用不同大小的卷积核,能够获取不同尺度的特征,因此 PPLCNetV2 在 Stage3、Stage4 中,在同一层组合使用 kernel size 分别为 5、3、1 的 DW 卷积,同时为了避免对模型效率的影响,使用重参数化(Re parameterization,Rep)策略对同层的 DW 卷积进行融合,如下图所示。
+
+![](../../images/PP-LCNetV2/rep.png)
+
+### 2.2 PW 卷积
+
+深度可分离卷积通常由一层 DW 卷积和一层 PW 卷积组成,用以替换标准卷积,为了使深度可分离卷积具有更强的拟合能力,我们尝试使用两层 PW 卷积,同时为了控制模型效率不受影响,两层 PW 卷积设置为:第一个在通道维度对特征图压缩,第二个再通过放大还原特征图通道,如下图所示。通过实验发现,该策略能够显著提高模型性能,同时为了平衡对模型效率带来的影响,PPLCNetV2 仅在 Stage4、Stage5 中使用了该策略。
+
+![](../../images/PP-LCNetV2/split_pw.png)
+
+### 2.3 Shortcut
+
+残差结构(residual)自提出以来,被诸多模型广泛使用,但在轻量级卷积神经网络中,由于残差结构所带来的元素级(element-wise)加法操作,会对模型的速度造成影响,我们在 PP-LCNetV2 中,以 Stage 为单位实验了 残差结构对模型的影响,发现残差结构的使用并非一定会带来性能的提高,因此 PPLCNetV2 仅在最后一个 Stage 中的使用了残差结构:在 Block 中增加 Shortcut,如下图所示。
+
+![](../../images/PP-LCNetV2/shortcut.png)
+
+### 2.4 激活函数
+
+在目前的轻量级卷积神经网络中,ReLU、Hard-Swish 激活函数最为常用,虽然在模型性能方面,Hard-Swish 通常更为优秀,然而我们发现部分推理平台对于 Hard-Swish 激活函数的效率优化并不理想,因此为了兼顾通用性,PP-LCNetV2 默认使用了 ReLU 激活函数,并且我们测试发现,ReLU 激活函数对于较大模型的性能影响较小。
+
+### 2.5 SE 模块
+
+虽然 SE 模块能够显著提高模型性能,但其对模型速度的影响同样不可忽视,在 PP-LCNetV1 中,我们发现在模型中后部使用 SE 模块能够获得最大化的收益。在 PP-LCNetV2 的优化过程中,我们以 Stage 为单位对 SE 模块的位置做了进一步实验,并发现在 Stage3 中使用能够取得更好的平衡。
+
+## 3. 实验结果
+
+在不使用额外数据的前提下,PPLCNetV2_base 模型在图像分类 ImageNet 数据集上能够取得超过 77% 的 Top1 Acc,同时在 Intel CPU 平台的推理时间在 4.4 ms 以下,如下表所示,其中推理时间基于 Intel(R) Xeon(R) Gold 6271C CPU @ 2.60GHz 硬件平台,OpenVINO 推理平台。
+
+| Model | Params(M) | FLOPs(M) | Top-1 Acc(\%) | Top-5 Acc(\%) | Latency(ms) |
+|-------|-----------|----------|---------------|---------------|-------------|
+| MobileNetV3_Large_x1_25 | 7.4 | 714 | 76.4 | 93.00 | 5.19 |
+| PPLCNetV2_x2_5 | 9 | 906 | 76.60 | 93.00 | 7.25 |
+| PPLCNetV2_base | 6.6 | 604 | 77.04 | 93.27 | 4.32 |
+
+
+
+关于 PP-LCNetV2 模型的更多信息,敬请关注。
diff --git a/docs/zh_CN/samples/.gitkeep b/docs/zh_CN/samples/.gitkeep
deleted file mode 100644
index 8b137891791fe96927ad78e64b0aad7bded08bdc..0000000000000000000000000000000000000000
--- a/docs/zh_CN/samples/.gitkeep
+++ /dev/null
@@ -1 +0,0 @@
-
diff --git a/docs/zh_CN/samples/Personnel_Access/README.md b/docs/zh_CN/samples/Personnel_Access/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..d63c67afea59430cc627458d6f35fd95e2ac59d1
--- /dev/null
+++ b/docs/zh_CN/samples/Personnel_Access/README.md
@@ -0,0 +1,16 @@
+## 人员出入管理
+
+近几年,AI视觉技术在安防、工业制造等场景在产业智能化升级进程中发挥着举足轻重的作用。【进出管控】作为各行业中的关键场景,应用需求十分迫切。 如在居家防盗、机房管控以及景区危险告警等场景中,存在大量对异常目标(人、车或其他物体)不经允许擅自进入规定区域的及时检测需求。利用深度学习视觉技术,可以及时准确地对闯入行为进行识别并发出告警信息。切实保障人员的生命财产安全。相比传统人力监管的方式,不仅可以实现7*24小时不间断的全方位保护,还能极大地降低管理成本,解放劳动力。
+
+但在真实产业中,要实现高精度的人员进出识别不是一件容易的事,在实际场景中存在着各种各样的问题:
+
+**摄像头采集到的图像会受到建筑、机器、车辆等遮挡的影响**
+
+**天气多种多样,要适应白天、黑夜、雾天和雨天等**
+
+针对上述场景,本次飞桨产业实践范例库推出了重点区域人员进出管控实践示例,提供从数据准备、技术方案、模型训练优化,到模型部署的全流程可复用方案,有效解决了不同光照、不同天气等室外复杂环境下的图像分类问题,并且极大地降低了数据标注和算力成本,适用于厂区巡检、家居防盗、景区管理等多个产业应用。
+
+
+![result](./imgs/someone.gif)
+
+**注**: AI Studio在线运行代码请参考[人员出入管理](https://aistudio.baidu.com/aistudio/projectdetail/4094475)
diff --git a/docs/zh_CN/samples/Personnel_Access/imgs/someone.gif b/docs/zh_CN/samples/Personnel_Access/imgs/someone.gif
new file mode 100644
index 0000000000000000000000000000000000000000..1f5d684e5455971a636f70540216366166d8d9f8
Binary files /dev/null and b/docs/zh_CN/samples/Personnel_Access/imgs/someone.gif differ
diff --git a/ppcls/arch/__init__.py b/ppcls/arch/__init__.py
index da21e101a27eb0db2c05b658346148bda3139c80..4021457961ad9013df79b05594e8424d1c312b10 100644
--- a/ppcls/arch/__init__.py
+++ b/ppcls/arch/__init__.py
@@ -32,14 +32,19 @@ from ppcls.arch.distill.afd_attention import LinearTransformStudent, LinearTrans
__all__ = ["build_model", "RecModel", "DistillationModel", "AttentionModel"]
-def build_model(config):
+def build_model(config, mode="train"):
arch_config = copy.deepcopy(config["Arch"])
model_type = arch_config.pop("name")
+ use_sync_bn = arch_config.pop("use_sync_bn", False)
mod = importlib.import_module(__name__)
arch = getattr(mod, model_type)(**arch_config)
+ if use_sync_bn:
+ arch = nn.SyncBatchNorm.convert_sync_batchnorm(arch)
+
if isinstance(arch, TheseusLayer):
prune_model(config, arch)
- quantize_model(config, arch)
+ quantize_model(config, arch, mode)
+
return arch
@@ -50,6 +55,7 @@ def apply_to_static(config, model):
specs = None
if 'image_shape' in config['Global']:
specs = [InputSpec([None] + config['Global']['image_shape'])]
+ specs[0].stop_gradient = True
model = to_static(model, input_spec=specs)
logger.info("Successfully to apply @to_static with specs: {}".format(
specs))
diff --git a/ppcls/arch/backbone/__init__.py b/ppcls/arch/backbone/__init__.py
index c51b85a0ee683de9981c838a50c58447f206bf73..e957358479cb98d8bde3dac0d4b2785b8965c7bf 100644
--- a/ppcls/arch/backbone/__init__.py
+++ b/ppcls/arch/backbone/__init__.py
@@ -22,7 +22,9 @@ from ppcls.arch.backbone.legendary_models.vgg import VGG11, VGG13, VGG16, VGG19
from ppcls.arch.backbone.legendary_models.inception_v3 import InceptionV3
from ppcls.arch.backbone.legendary_models.hrnet import HRNet_W18_C, HRNet_W30_C, HRNet_W32_C, HRNet_W40_C, HRNet_W44_C, HRNet_W48_C, HRNet_W60_C, HRNet_W64_C, SE_HRNet_W64_C
from ppcls.arch.backbone.legendary_models.pp_lcnet import PPLCNet_x0_25, PPLCNet_x0_35, PPLCNet_x0_5, PPLCNet_x0_75, PPLCNet_x1_0, PPLCNet_x1_5, PPLCNet_x2_0, PPLCNet_x2_5
+from ppcls.arch.backbone.legendary_models.pp_lcnet_v2 import PPLCNetV2_base
from ppcls.arch.backbone.legendary_models.esnet import ESNet_x0_25, ESNet_x0_5, ESNet_x0_75, ESNet_x1_0
+from ppcls.arch.backbone.legendary_models.pp_hgnet import PPHGNet_tiny, PPHGNet_small, PPHGNet_base
from ppcls.arch.backbone.model_zoo.resnet_vc import ResNet50_vc
from ppcls.arch.backbone.model_zoo.resnext import ResNeXt50_32x4d, ResNeXt50_64x4d, ResNeXt101_32x4d, ResNeXt101_64x4d, ResNeXt152_32x4d, ResNeXt152_64x4d
@@ -50,7 +52,7 @@ from ppcls.arch.backbone.model_zoo.darknet import DarkNet53
from ppcls.arch.backbone.model_zoo.regnet import RegNetX_200MF, RegNetX_4GF, RegNetX_32GF, RegNetY_200MF, RegNetY_4GF, RegNetY_32GF
from ppcls.arch.backbone.model_zoo.vision_transformer import ViT_small_patch16_224, ViT_base_patch16_224, ViT_base_patch16_384, ViT_base_patch32_384, ViT_large_patch16_224, ViT_large_patch16_384, ViT_large_patch32_384
from ppcls.arch.backbone.model_zoo.distilled_vision_transformer import DeiT_tiny_patch16_224, DeiT_small_patch16_224, DeiT_base_patch16_224, DeiT_tiny_distilled_patch16_224, DeiT_small_distilled_patch16_224, DeiT_base_distilled_patch16_224, DeiT_base_patch16_384, DeiT_base_distilled_patch16_384
-from ppcls.arch.backbone.model_zoo.swin_transformer import SwinTransformer_tiny_patch4_window7_224, SwinTransformer_small_patch4_window7_224, SwinTransformer_base_patch4_window7_224, SwinTransformer_base_patch4_window12_384, SwinTransformer_large_patch4_window7_224, SwinTransformer_large_patch4_window12_384
+from ppcls.arch.backbone.legendary_models.swin_transformer import SwinTransformer_tiny_patch4_window7_224, SwinTransformer_small_patch4_window7_224, SwinTransformer_base_patch4_window7_224, SwinTransformer_base_patch4_window12_384, SwinTransformer_large_patch4_window7_224, SwinTransformer_large_patch4_window12_384
from ppcls.arch.backbone.model_zoo.cswin_transformer import CSWinTransformer_tiny_224, CSWinTransformer_small_224, CSWinTransformer_base_224, CSWinTransformer_large_224, CSWinTransformer_base_384, CSWinTransformer_large_384
from ppcls.arch.backbone.model_zoo.mixnet import MixNet_S, MixNet_M, MixNet_L
from ppcls.arch.backbone.model_zoo.rexnet import ReXNet_1_0, ReXNet_1_3, ReXNet_1_5, ReXNet_2_0, ReXNet_3_0
diff --git a/ppcls/arch/backbone/legendary_models/pp_hgnet.py b/ppcls/arch/backbone/legendary_models/pp_hgnet.py
new file mode 100644
index 0000000000000000000000000000000000000000..3e0412dfb210c7dc44bc98854dbb96fca526ab1f
--- /dev/null
+++ b/ppcls/arch/backbone/legendary_models/pp_hgnet.py
@@ -0,0 +1,372 @@
+# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import paddle
+import paddle.nn as nn
+import paddle.nn.functional as F
+from paddle.nn.initializer import KaimingNormal, Constant
+from paddle.nn import Conv2D, BatchNorm2D, ReLU, AdaptiveAvgPool2D, MaxPool2D
+from paddle.regularizer import L2Decay
+from paddle import ParamAttr
+
+from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
+from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
+
+MODEL_URLS = {
+ "PPHGNet_tiny":
+ "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_tiny_pretrained.pdparams",
+ "PPHGNet_small":
+ "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_small_pretrained.pdparams"
+}
+
+__all__ = list(MODEL_URLS.keys())
+
+kaiming_normal_ = KaimingNormal()
+zeros_ = Constant(value=0.)
+ones_ = Constant(value=1.)
+
+
+class ConvBNAct(TheseusLayer):
+ def __init__(self,
+ in_channels,
+ out_channels,
+ kernel_size,
+ stride,
+ groups=1,
+ use_act=True):
+ super().__init__()
+ self.use_act = use_act
+ self.conv = Conv2D(
+ in_channels,
+ out_channels,
+ kernel_size,
+ stride,
+ padding=(kernel_size - 1) // 2,
+ groups=groups,
+ bias_attr=False)
+ self.bn = BatchNorm2D(
+ out_channels,
+ weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
+ bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
+ if self.use_act:
+ self.act = ReLU()
+
+ def forward(self, x):
+ x = self.conv(x)
+ x = self.bn(x)
+ if self.use_act:
+ x = self.act(x)
+ return x
+
+
+class ESEModule(TheseusLayer):
+ def __init__(self, channels):
+ super().__init__()
+ self.avg_pool = AdaptiveAvgPool2D(1)
+ self.conv = Conv2D(
+ in_channels=channels,
+ out_channels=channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.sigmoid = nn.Sigmoid()
+
+ def forward(self, x):
+ identity = x
+ x = self.avg_pool(x)
+ x = self.conv(x)
+ x = self.sigmoid(x)
+ return paddle.multiply(x=identity, y=x)
+
+
+class HG_Block(TheseusLayer):
+ def __init__(
+ self,
+ in_channels,
+ mid_channels,
+ out_channels,
+ layer_num,
+ identity=False, ):
+ super().__init__()
+ self.identity = identity
+
+ self.layers = nn.LayerList()
+ self.layers.append(
+ ConvBNAct(
+ in_channels=in_channels,
+ out_channels=mid_channels,
+ kernel_size=3,
+ stride=1))
+ for _ in range(layer_num - 1):
+ self.layers.append(
+ ConvBNAct(
+ in_channels=mid_channels,
+ out_channels=mid_channels,
+ kernel_size=3,
+ stride=1))
+
+ # feature aggregation
+ total_channels = in_channels + layer_num * mid_channels
+ self.aggregation_conv = ConvBNAct(
+ in_channels=total_channels,
+ out_channels=out_channels,
+ kernel_size=1,
+ stride=1)
+ self.att = ESEModule(out_channels)
+
+ def forward(self, x):
+ identity = x
+ output = []
+ output.append(x)
+ for layer in self.layers:
+ x = layer(x)
+ output.append(x)
+ x = paddle.concat(output, axis=1)
+ x = self.aggregation_conv(x)
+ x = self.att(x)
+ if self.identity:
+ x += identity
+ return x
+
+
+class HG_Stage(TheseusLayer):
+ def __init__(self,
+ in_channels,
+ mid_channels,
+ out_channels,
+ block_num,
+ layer_num,
+ downsample=True):
+ super().__init__()
+ self.downsample = downsample
+ if downsample:
+ self.downsample = ConvBNAct(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ kernel_size=3,
+ stride=2,
+ groups=in_channels,
+ use_act=False)
+
+ blocks_list = []
+ blocks_list.append(
+ HG_Block(
+ in_channels,
+ mid_channels,
+ out_channels,
+ layer_num,
+ identity=False))
+ for _ in range(block_num - 1):
+ blocks_list.append(
+ HG_Block(
+ out_channels,
+ mid_channels,
+ out_channels,
+ layer_num,
+ identity=True))
+ self.blocks = nn.Sequential(*blocks_list)
+
+ def forward(self, x):
+ if self.downsample:
+ x = self.downsample(x)
+ x = self.blocks(x)
+ return x
+
+
+class PPHGNet(TheseusLayer):
+ """
+ PPHGNet
+ Args:
+ stem_channels: list. Stem channel list of PPHGNet.
+ stage_config: dict. The configuration of each stage of PPHGNet. such as the number of channels, stride, etc.
+ layer_num: int. Number of layers of HG_Block.
+ use_last_conv: boolean. Whether to use a 1x1 convolutional layer before the classification layer.
+ class_expand: int=2048. Number of channels for the last 1x1 convolutional layer.
+ dropout_prob: float. Parameters of dropout, 0.0 means dropout is not used.
+ class_num: int=1000. The number of classes.
+ Returns:
+ model: nn.Layer. Specific PPHGNet model depends on args.
+ """
+ def __init__(self,
+ stem_channels,
+ stage_config,
+ layer_num,
+ use_last_conv=True,
+ class_expand=2048,
+ dropout_prob=0.0,
+ class_num=1000):
+ super().__init__()
+ self.use_last_conv = use_last_conv
+ self.class_expand = class_expand
+
+ # stem
+ stem_channels.insert(0, 3)
+ self.stem = nn.Sequential(* [
+ ConvBNAct(
+ in_channels=stem_channels[i],
+ out_channels=stem_channels[i + 1],
+ kernel_size=3,
+ stride=2 if i == 0 else 1) for i in range(
+ len(stem_channels) - 1)
+ ])
+ self.pool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
+
+ # stages
+ self.stages = nn.LayerList()
+ for k in stage_config:
+ in_channels, mid_channels, out_channels, block_num, downsample = stage_config[
+ k]
+ self.stages.append(
+ HG_Stage(in_channels, mid_channels, out_channels, block_num,
+ layer_num, downsample))
+
+ self.avg_pool = AdaptiveAvgPool2D(1)
+ if self.use_last_conv:
+ self.last_conv = Conv2D(
+ in_channels=out_channels,
+ out_channels=self.class_expand,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ bias_attr=False)
+ self.act = nn.ReLU()
+ self.dropout = nn.Dropout(
+ p=dropout_prob, mode="downscale_in_infer")
+
+ self.flatten = nn.Flatten(start_axis=1, stop_axis=-1)
+ self.fc = nn.Linear(self.class_expand
+ if self.use_last_conv else out_channels, class_num)
+
+ self._init_weights()
+
+ def _init_weights(self):
+ for m in self.sublayers():
+ if isinstance(m, nn.Conv2D):
+ kaiming_normal_(m.weight)
+ elif isinstance(m, (nn.BatchNorm2D)):
+ ones_(m.weight)
+ zeros_(m.bias)
+ elif isinstance(m, nn.Linear):
+ zeros_(m.bias)
+
+ def forward(self, x):
+ x = self.stem(x)
+ x = self.pool(x)
+
+ for stage in self.stages:
+ x = stage(x)
+
+ x = self.avg_pool(x)
+ if self.use_last_conv:
+ x = self.last_conv(x)
+ x = self.act(x)
+ x = self.dropout(x)
+ x = self.flatten(x)
+ x = self.fc(x)
+ return x
+
+
+def _load_pretrained(pretrained, model, model_url, use_ssld):
+ if pretrained is False:
+ pass
+ elif pretrained is True:
+ load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
+ elif isinstance(pretrained, str):
+ load_dygraph_pretrain(model, pretrained)
+ else:
+ raise RuntimeError(
+ "pretrained type is not available. Please use `string` or `boolean` type."
+ )
+
+
+def PPHGNet_tiny(pretrained=False, use_ssld=False, **kwargs):
+ """
+ PPHGNet_tiny
+ Args:
+ pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+ If str, means the path of the pretrained model.
+ use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+ Returns:
+ model: nn.Layer. Specific `PPHGNet_tiny` model depends on args.
+ """
+ stage_config = {
+ # in_channels, mid_channels, out_channels, blocks, downsample
+ "stage1": [96, 96, 224, 1, False],
+ "stage2": [224, 128, 448, 1, True],
+ "stage3": [448, 160, 512, 2, True],
+ "stage4": [512, 192, 768, 1, True],
+ }
+
+ model = PPHGNet(
+ stem_channels=[48, 48, 96],
+ stage_config=stage_config,
+ layer_num=5,
+ **kwargs)
+ _load_pretrained(pretrained, model, MODEL_URLS["PPHGNet_tiny"], use_ssld)
+ return model
+
+
+def PPHGNet_small(pretrained=False, use_ssld=False, **kwargs):
+ """
+ PPHGNet_small
+ Args:
+ pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+ If str, means the path of the pretrained model.
+ use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+ Returns:
+ model: nn.Layer. Specific `PPHGNet_small` model depends on args.
+ """
+ stage_config = {
+ # in_channels, mid_channels, out_channels, blocks, downsample
+ "stage1": [128, 128, 256, 1, False],
+ "stage2": [256, 160, 512, 1, True],
+ "stage3": [512, 192, 768, 2, True],
+ "stage4": [768, 224, 1024, 1, True],
+ }
+
+ model = PPHGNet(
+ stem_channels=[64, 64, 128],
+ stage_config=stage_config,
+ layer_num=6,
+ **kwargs)
+ _load_pretrained(pretrained, model, MODEL_URLS["PPHGNet_small"], use_ssld)
+ return model
+
+
+def PPHGNet_base(pretrained=False, use_ssld=False, **kwargs):
+ """
+ PPHGNet_base
+ Args:
+ pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+ If str, means the path of the pretrained model.
+ use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+ Returns:
+ model: nn.Layer. Specific `PPHGNet_base` model depends on args.
+ """
+ stage_config = {
+ # in_channels, mid_channels, out_channels, blocks, downsample
+ "stage1": [160, 192, 320, 1, False],
+ "stage2": [320, 224, 640, 2, True],
+ "stage3": [640, 256, 960, 3, True],
+ "stage4": [960, 288, 1280, 2, True],
+ }
+
+ model = PPHGNet(
+ stem_channels=[96, 96, 160],
+ stage_config=stage_config,
+ layer_num=7,
+ dropout_prob=0.2,
+ **kwargs)
+ _load_pretrained(pretrained, model, MODEL_URLS["PPHGNet_base"], use_ssld)
+ return model
diff --git a/ppcls/arch/backbone/legendary_models/pp_lcnet.py b/ppcls/arch/backbone/legendary_models/pp_lcnet.py
index 40174622029c15d713525b3968ea2b3dd8a7239a..64fa61e19c5a362b28eb4c1e9686eadadd02555b 100644
--- a/ppcls/arch/backbone/legendary_models/pp_lcnet.py
+++ b/ppcls/arch/backbone/legendary_models/pp_lcnet.py
@@ -17,7 +17,7 @@ from __future__ import absolute_import, division, print_function
import paddle
import paddle.nn as nn
from paddle import ParamAttr
-from paddle.nn import AdaptiveAvgPool2D, BatchNorm, Conv2D, Dropout, Linear
+from paddle.nn import AdaptiveAvgPool2D, BatchNorm2D, Conv2D, Dropout, Linear
from paddle.regularizer import L2Decay
from paddle.nn.initializer import KaimingNormal
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
@@ -83,7 +83,8 @@ class ConvBNLayer(TheseusLayer):
filter_size,
num_filters,
stride,
- num_groups=1):
+ num_groups=1,
+ lr_mult=1.0):
super().__init__()
self.conv = Conv2D(
@@ -93,13 +94,13 @@ class ConvBNLayer(TheseusLayer):
stride=stride,
padding=(filter_size - 1) // 2,
groups=num_groups,
- weight_attr=ParamAttr(initializer=KaimingNormal()),
+ weight_attr=ParamAttr(initializer=KaimingNormal(), learning_rate=lr_mult),
bias_attr=False)
- self.bn = BatchNorm(
+ self.bn = BatchNorm2D(
num_filters,
- param_attr=ParamAttr(regularizer=L2Decay(0.0)),
- bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
+ weight_attr=ParamAttr(regularizer=L2Decay(0.0), learning_rate=lr_mult),
+ bias_attr=ParamAttr(regularizer=L2Decay(0.0), learning_rate=lr_mult))
self.hardswish = nn.Hardswish()
def forward(self, x):
@@ -115,7 +116,8 @@ class DepthwiseSeparable(TheseusLayer):
num_filters,
stride,
dw_size=3,
- use_se=False):
+ use_se=False,
+ lr_mult=1.0):
super().__init__()
self.use_se = use_se
self.dw_conv = ConvBNLayer(
@@ -123,14 +125,17 @@ class DepthwiseSeparable(TheseusLayer):
num_filters=num_channels,
filter_size=dw_size,
stride=stride,
- num_groups=num_channels)
+ num_groups=num_channels,
+ lr_mult=lr_mult)
if use_se:
- self.se = SEModule(num_channels)
+ self.se = SEModule(num_channels,
+ lr_mult=lr_mult)
self.pw_conv = ConvBNLayer(
num_channels=num_channels,
filter_size=1,
num_filters=num_filters,
- stride=1)
+ stride=1,
+ lr_mult=lr_mult)
def forward(self, x):
x = self.dw_conv(x)
@@ -141,7 +146,7 @@ class DepthwiseSeparable(TheseusLayer):
class SEModule(TheseusLayer):
- def __init__(self, channel, reduction=4):
+ def __init__(self, channel, reduction=4, lr_mult=1.0):
super().__init__()
self.avg_pool = AdaptiveAvgPool2D(1)
self.conv1 = Conv2D(
@@ -149,14 +154,18 @@ class SEModule(TheseusLayer):
out_channels=channel // reduction,
kernel_size=1,
stride=1,
- padding=0)
+ padding=0,
+ weight_attr=ParamAttr(learning_rate=lr_mult),
+ bias_attr=ParamAttr(learning_rate=lr_mult))
self.relu = nn.ReLU()
self.conv2 = Conv2D(
in_channels=channel // reduction,
out_channels=channel,
kernel_size=1,
stride=1,
- padding=0)
+ padding=0,
+ weight_attr=ParamAttr(learning_rate=lr_mult),
+ bias_attr=ParamAttr(learning_rate=lr_mult))
self.hardsigmoid = nn.Hardsigmoid()
def forward(self, x):
@@ -177,17 +186,32 @@ class PPLCNet(TheseusLayer):
class_num=1000,
dropout_prob=0.2,
class_expand=1280,
+ lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
+ use_last_conv=True,
return_patterns=None,
return_stages=None):
super().__init__()
self.scale = scale
self.class_expand = class_expand
+ self.lr_mult_list = lr_mult_list
+ self.use_last_conv = use_last_conv
+ if isinstance(self.lr_mult_list, str):
+ self.lr_mult_list = eval(self.lr_mult_list)
+
+ assert isinstance(self.lr_mult_list, (
+ list, tuple
+ )), "lr_mult_list should be in (list, tuple) but got {}".format(
+ type(self.lr_mult_list))
+ assert len(self.lr_mult_list
+ ) == 6, "lr_mult_list length should be 5 but got {}".format(
+ len(self.lr_mult_list))
self.conv1 = ConvBNLayer(
num_channels=3,
filter_size=3,
num_filters=make_divisible(16 * scale),
- stride=2)
+ stride=2,
+ lr_mult=self.lr_mult_list[0])
self.blocks2 = nn.Sequential(* [
DepthwiseSeparable(
@@ -195,7 +219,8 @@ class PPLCNet(TheseusLayer):
num_filters=make_divisible(out_c * scale),
dw_size=k,
stride=s,
- use_se=se)
+ use_se=se,
+ lr_mult=self.lr_mult_list[1])
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks2"])
])
@@ -205,7 +230,8 @@ class PPLCNet(TheseusLayer):
num_filters=make_divisible(out_c * scale),
dw_size=k,
stride=s,
- use_se=se)
+ use_se=se,
+ lr_mult=self.lr_mult_list[2])
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks3"])
])
@@ -215,7 +241,8 @@ class PPLCNet(TheseusLayer):
num_filters=make_divisible(out_c * scale),
dw_size=k,
stride=s,
- use_se=se)
+ use_se=se,
+ lr_mult=self.lr_mult_list[3])
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks4"])
])
@@ -225,7 +252,8 @@ class PPLCNet(TheseusLayer):
num_filters=make_divisible(out_c * scale),
dw_size=k,
stride=s,
- use_se=se)
+ use_se=se,
+ lr_mult=self.lr_mult_list[4])
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks5"])
])
@@ -235,25 +263,26 @@ class PPLCNet(TheseusLayer):
num_filters=make_divisible(out_c * scale),
dw_size=k,
stride=s,
- use_se=se)
+ use_se=se,
+ lr_mult=self.lr_mult_list[5])
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks6"])
])
self.avg_pool = AdaptiveAvgPool2D(1)
-
- self.last_conv = Conv2D(
- in_channels=make_divisible(NET_CONFIG["blocks6"][-1][2] * scale),
- out_channels=self.class_expand,
- kernel_size=1,
- stride=1,
- padding=0,
- bias_attr=False)
-
- self.hardswish = nn.Hardswish()
- self.dropout = Dropout(p=dropout_prob, mode="downscale_in_infer")
+ if self.use_last_conv:
+ self.last_conv = Conv2D(
+ in_channels=make_divisible(NET_CONFIG["blocks6"][-1][2] * scale),
+ out_channels=self.class_expand,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ bias_attr=False)
+ self.hardswish = nn.Hardswish()
+ self.dropout = Dropout(p=dropout_prob, mode="downscale_in_infer")
+ else:
+ self.last_conv = None
self.flatten = nn.Flatten(start_axis=1, stop_axis=-1)
-
- self.fc = Linear(self.class_expand, class_num)
+ self.fc = Linear(self.class_expand if self.use_last_conv else NET_CONFIG["blocks6"][-1][2], class_num)
super().init_res(
stages_pattern,
@@ -270,9 +299,10 @@ class PPLCNet(TheseusLayer):
x = self.blocks6(x)
x = self.avg_pool(x)
- x = self.last_conv(x)
- x = self.hardswish(x)
- x = self.dropout(x)
+ if self.last_conv is not None:
+ x = self.last_conv(x)
+ x = self.hardswish(x)
+ x = self.dropout(x)
x = self.flatten(x)
x = self.fc(x)
return x
diff --git a/ppcls/arch/backbone/legendary_models/pp_lcnet_v2.py b/ppcls/arch/backbone/legendary_models/pp_lcnet_v2.py
new file mode 100644
index 0000000000000000000000000000000000000000..459d84275ac63af54fb9ad10af2bcf2f7759052d
--- /dev/null
+++ b/ppcls/arch/backbone/legendary_models/pp_lcnet_v2.py
@@ -0,0 +1,352 @@
+# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import absolute_import, division, print_function
+
+import paddle
+import paddle.nn as nn
+import paddle.nn.functional as F
+from paddle import ParamAttr
+from paddle.nn import AdaptiveAvgPool2D, BatchNorm2D, Conv2D, Dropout, Linear
+from paddle.regularizer import L2Decay
+from paddle.nn.initializer import KaimingNormal
+from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
+from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
+
+MODEL_URLS = {
+ "PPLCNetV2_base":
+ "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNetV2_base_pretrained.pdparams",
+}
+
+__all__ = list(MODEL_URLS.keys())
+
+NET_CONFIG = {
+ # in_channels, kernel_size, split_pw, use_rep, use_se, use_shortcut
+ "stage1": [64, 3, False, False, False, False],
+ "stage2": [128, 3, False, False, False, False],
+ "stage3": [256, 5, True, True, True, False],
+ "stage4": [512, 5, False, True, False, True],
+}
+
+
+def make_divisible(v, divisor=8, min_value=None):
+ if min_value is None:
+ min_value = divisor
+ new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
+ if new_v < 0.9 * v:
+ new_v += divisor
+ return new_v
+
+
+class ConvBNLayer(TheseusLayer):
+ def __init__(self,
+ in_channels,
+ out_channels,
+ kernel_size,
+ stride,
+ groups=1,
+ use_act=True):
+ super().__init__()
+ self.use_act = use_act
+ self.conv = Conv2D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ kernel_size=kernel_size,
+ stride=stride,
+ padding=(kernel_size - 1) // 2,
+ groups=groups,
+ weight_attr=ParamAttr(initializer=KaimingNormal()),
+ bias_attr=False)
+
+ self.bn = BatchNorm2D(
+ out_channels,
+ weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
+ bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
+ if self.use_act:
+ self.act = nn.ReLU()
+
+ def forward(self, x):
+ x = self.conv(x)
+ x = self.bn(x)
+ if self.use_act:
+ x = self.act(x)
+ return x
+
+
+class SEModule(TheseusLayer):
+ def __init__(self, channel, reduction=4):
+ super().__init__()
+ self.avg_pool = AdaptiveAvgPool2D(1)
+ self.conv1 = Conv2D(
+ in_channels=channel,
+ out_channels=channel // reduction,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.relu = nn.ReLU()
+ self.conv2 = Conv2D(
+ in_channels=channel // reduction,
+ out_channels=channel,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.hardsigmoid = nn.Sigmoid()
+
+ def forward(self, x):
+ identity = x
+ x = self.avg_pool(x)
+ x = self.conv1(x)
+ x = self.relu(x)
+ x = self.conv2(x)
+ x = self.hardsigmoid(x)
+ x = paddle.multiply(x=identity, y=x)
+ return x
+
+
+class RepDepthwiseSeparable(TheseusLayer):
+ def __init__(self,
+ in_channels,
+ out_channels,
+ stride,
+ dw_size=3,
+ split_pw=False,
+ use_rep=False,
+ use_se=False,
+ use_shortcut=False):
+ super().__init__()
+ self.is_repped = False
+
+ self.dw_size = dw_size
+ self.split_pw = split_pw
+ self.use_rep = use_rep
+ self.use_se = use_se
+ self.use_shortcut = True if use_shortcut and stride == 1 and in_channels == out_channels else False
+
+ if self.use_rep:
+ self.dw_conv_list = nn.LayerList()
+ for kernel_size in range(self.dw_size, 0, -2):
+ if kernel_size == 1 and stride != 1:
+ continue
+ dw_conv = ConvBNLayer(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ kernel_size=kernel_size,
+ stride=stride,
+ groups=in_channels,
+ use_act=False)
+ self.dw_conv_list.append(dw_conv)
+ self.dw_conv = nn.Conv2D(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ kernel_size=dw_size,
+ stride=stride,
+ padding=(dw_size - 1) // 2,
+ groups=in_channels)
+ else:
+ self.dw_conv = ConvBNLayer(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ kernel_size=dw_size,
+ stride=stride,
+ groups=in_channels)
+
+ self.act = nn.ReLU()
+
+ if use_se:
+ self.se = SEModule(in_channels)
+
+ if self.split_pw:
+ pw_ratio = 0.5
+ self.pw_conv_1 = ConvBNLayer(
+ in_channels=in_channels,
+ kernel_size=1,
+ out_channels=int(out_channels * pw_ratio),
+ stride=1)
+ self.pw_conv_2 = ConvBNLayer(
+ in_channels=int(out_channels * pw_ratio),
+ kernel_size=1,
+ out_channels=out_channels,
+ stride=1)
+ else:
+ self.pw_conv = ConvBNLayer(
+ in_channels=in_channels,
+ kernel_size=1,
+ out_channels=out_channels,
+ stride=1)
+
+ def forward(self, x):
+ if self.use_rep:
+ input_x = x
+ if self.is_repped:
+ x = self.act(self.dw_conv(x))
+ else:
+ y = self.dw_conv_list[0](x)
+ for dw_conv in self.dw_conv_list[1:]:
+ y += dw_conv(x)
+ x = self.act(y)
+ else:
+ x = self.dw_conv(x)
+
+ if self.use_se:
+ x = self.se(x)
+ if self.split_pw:
+ x = self.pw_conv_1(x)
+ x = self.pw_conv_2(x)
+ else:
+ x = self.pw_conv(x)
+ if self.use_shortcut:
+ x = x + input_x
+ return x
+
+ def rep(self):
+ if self.use_rep:
+ self.is_repped = True
+ kernel, bias = self._get_equivalent_kernel_bias()
+ self.dw_conv.weight.set_value(kernel)
+ self.dw_conv.bias.set_value(bias)
+
+ def _get_equivalent_kernel_bias(self):
+ kernel_sum = 0
+ bias_sum = 0
+ for dw_conv in self.dw_conv_list:
+ kernel, bias = self._fuse_bn_tensor(dw_conv)
+ kernel = self._pad_tensor(kernel, to_size=self.dw_size)
+ kernel_sum += kernel
+ bias_sum += bias
+ return kernel_sum, bias_sum
+
+ def _fuse_bn_tensor(self, branch):
+ kernel = branch.conv.weight
+ running_mean = branch.bn._mean
+ running_var = branch.bn._variance
+ gamma = branch.bn.weight
+ beta = branch.bn.bias
+ eps = branch.bn._epsilon
+ std = (running_var + eps).sqrt()
+ t = (gamma / std).reshape((-1, 1, 1, 1))
+ return kernel * t, beta - running_mean * gamma / std
+
+ def _pad_tensor(self, tensor, to_size):
+ from_size = tensor.shape[-1]
+ if from_size == to_size:
+ return tensor
+ pad = (to_size - from_size) // 2
+ return F.pad(tensor, [pad, pad, pad, pad])
+
+
+class PPLCNetV2(TheseusLayer):
+ def __init__(self,
+ scale,
+ depths,
+ class_num=1000,
+ dropout_prob=0,
+ use_last_conv=True,
+ class_expand=1280):
+ super().__init__()
+ self.scale = scale
+ self.use_last_conv = use_last_conv
+ self.class_expand = class_expand
+
+ self.stem = nn.Sequential(* [
+ ConvBNLayer(
+ in_channels=3,
+ kernel_size=3,
+ out_channels=make_divisible(32 * scale),
+ stride=2), RepDepthwiseSeparable(
+ in_channels=make_divisible(32 * scale),
+ out_channels=make_divisible(64 * scale),
+ stride=1,
+ dw_size=3)
+ ])
+
+ # stages
+ self.stages = nn.LayerList()
+ for depth_idx, k in enumerate(NET_CONFIG):
+ in_channels, kernel_size, split_pw, use_rep, use_se, use_shortcut = NET_CONFIG[
+ k]
+ self.stages.append(
+ nn.Sequential(* [
+ RepDepthwiseSeparable(
+ in_channels=make_divisible((in_channels if i == 0 else
+ in_channels * 2) * scale),
+ out_channels=make_divisible(in_channels * 2 * scale),
+ stride=2 if i == 0 else 1,
+ dw_size=kernel_size,
+ split_pw=split_pw,
+ use_rep=use_rep,
+ use_se=use_se,
+ use_shortcut=use_shortcut)
+ for i in range(depths[depth_idx])
+ ]))
+
+ self.avg_pool = AdaptiveAvgPool2D(1)
+
+ if self.use_last_conv:
+ self.last_conv = Conv2D(
+ in_channels=make_divisible(NET_CONFIG["stage4"][0] * 2 *
+ scale),
+ out_channels=self.class_expand,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ bias_attr=False)
+ self.act = nn.ReLU()
+ self.dropout = Dropout(p=dropout_prob, mode="downscale_in_infer")
+
+ self.flatten = nn.Flatten(start_axis=1, stop_axis=-1)
+ in_features = self.class_expand if self.use_last_conv else NET_CONFIG[
+ "stage4"][0] * 2 * scale
+ self.fc = Linear(in_features, class_num)
+
+ def forward(self, x):
+ x = self.stem(x)
+ for stage in self.stages:
+ x = stage(x)
+ x = self.avg_pool(x)
+ if self.use_last_conv:
+ x = self.last_conv(x)
+ x = self.act(x)
+ x = self.dropout(x)
+ x = self.flatten(x)
+ x = self.fc(x)
+ return x
+
+
+def _load_pretrained(pretrained, model, model_url, use_ssld):
+ if pretrained is False:
+ pass
+ elif pretrained is True:
+ load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
+ elif isinstance(pretrained, str):
+ load_dygraph_pretrain(model, pretrained)
+ else:
+ raise RuntimeError(
+ "pretrained type is not available. Please use `string` or `boolean` type."
+ )
+
+
+def PPLCNetV2_base(pretrained=False, use_ssld=False, **kwargs):
+ """
+ PPLCNetV2_base
+ Args:
+ pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
+ If str, means the path of the pretrained model.
+ use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
+ Returns:
+ model: nn.Layer. Specific `PPLCNetV2_base` model depends on args.
+ """
+ model = PPLCNetV2(
+ scale=1.0, depths=[2, 2, 6, 2], dropout_prob=0.2, **kwargs)
+ _load_pretrained(pretrained, model, MODEL_URLS["PPLCNetV2_base"], use_ssld)
+ return model
diff --git a/ppcls/arch/backbone/legendary_models/resnet.py b/ppcls/arch/backbone/legendary_models/resnet.py
index 643e860faf022000453e00cad637ef1ad572e0dc..ca75c2eaa4f2d7f4a604a312ed591c10811105c4 100644
--- a/ppcls/arch/backbone/legendary_models/resnet.py
+++ b/ppcls/arch/backbone/legendary_models/resnet.py
@@ -20,9 +20,10 @@ import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
-from paddle.nn import Conv2D, BatchNorm, Linear
+from paddle.nn import Conv2D, BatchNorm, Linear, BatchNorm2D
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform
+from paddle.regularizer import L2Decay
import math
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
@@ -132,11 +133,12 @@ class ConvBNLayer(TheseusLayer):
weight_attr=ParamAttr(learning_rate=lr_mult),
bias_attr=False,
data_format=data_format)
- self.bn = BatchNorm(
- num_filters,
- param_attr=ParamAttr(learning_rate=lr_mult),
- bias_attr=ParamAttr(learning_rate=lr_mult),
- data_layout=data_format)
+
+ weight_attr = ParamAttr(learning_rate=lr_mult, trainable=True)
+ bias_attr = ParamAttr(learning_rate=lr_mult, trainable=True)
+
+ self.bn = BatchNorm2D(
+ num_filters, weight_attr=weight_attr, bias_attr=bias_attr)
self.relu = nn.ReLU()
def forward(self, x):
@@ -192,6 +194,7 @@ class BottleneckBlock(TheseusLayer):
is_vd_mode=False if if_first else True,
lr_mult=lr_mult,
data_format=data_format)
+
self.relu = nn.ReLU()
self.shortcut = shortcut
@@ -312,7 +315,7 @@ class ResNet(TheseusLayer):
[[input_image_channel, 32, 3, 2], [32, 32, 3, 1], [32, 64, 3, 1]]
}
- self.stem = nn.Sequential(*[
+ self.stem = nn.Sequential(* [
ConvBNLayer(
num_channels=in_c,
num_filters=out_c,
diff --git a/ppcls/arch/backbone/model_zoo/swin_transformer.py b/ppcls/arch/backbone/legendary_models/swin_transformer.py
similarity index 99%
rename from ppcls/arch/backbone/model_zoo/swin_transformer.py
rename to ppcls/arch/backbone/legendary_models/swin_transformer.py
index 877b7365998bce81489a89ab57a240deb66d45cc..2a3401b2a3fae17e6ca5834cad1b362c5955400f 100644
--- a/ppcls/arch/backbone/model_zoo/swin_transformer.py
+++ b/ppcls/arch/backbone/legendary_models/swin_transformer.py
@@ -21,8 +21,8 @@ import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import TruncatedNormal, Constant
-from .vision_transformer import trunc_normal_, zeros_, ones_, to_2tuple, DropPath, Identity
-
+from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
+from ppcls.arch.backbone.model_zoo.vision_transformer import trunc_normal_, zeros_, ones_, to_2tuple, DropPath, Identity
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
@@ -589,7 +589,7 @@ class PatchEmbed(nn.Layer):
return flops
-class SwinTransformer(nn.Layer):
+class SwinTransformer(TheseusLayer):
""" Swin Transformer
A PaddlePaddle impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
https://arxiv.org/pdf/2103.14030
diff --git a/ppcls/arch/backbone/model_zoo/repvgg.py b/ppcls/arch/backbone/model_zoo/repvgg.py
index 8ff662a7f88086abeee6b7f6e0260d2d3b3cd0c1..12f65549fad60adae6a412d8adb05f9846922c81 100644
--- a/ppcls/arch/backbone/model_zoo/repvgg.py
+++ b/ppcls/arch/backbone/model_zoo/repvgg.py
@@ -124,13 +124,7 @@ class RepVGGBlock(nn.Layer):
groups=groups)
def forward(self, inputs):
- if not self.training and not self.is_repped:
- self.rep()
- self.is_repped = True
- if self.training and self.is_repped:
- self.is_repped = False
-
- if not self.training:
+ if self.is_repped:
return self.nonlinearity(self.rbr_reparam(inputs))
if self.rbr_identity is None:
@@ -154,6 +148,7 @@ class RepVGGBlock(nn.Layer):
kernel, bias = self.get_equivalent_kernel_bias()
self.rbr_reparam.weight.set_value(kernel)
self.rbr_reparam.bias.set_value(bias)
+ self.is_repped = True
def get_equivalent_kernel_bias(self):
kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
diff --git a/ppcls/arch/slim/quant.py b/ppcls/arch/slim/quant.py
index b8f59a78fdd9a8f1f3e613f5ee44d4fa68266e30..9fb9ff51e7ad2f03c94be824eef877d03d32229a 100644
--- a/ppcls/arch/slim/quant.py
+++ b/ppcls/arch/slim/quant.py
@@ -40,12 +40,14 @@ QUANT_CONFIG = {
}
-def quantize_model(config, model):
+def quantize_model(config, model, mode="train"):
if config.get("Slim", False) and config["Slim"].get("quant", False):
from paddleslim.dygraph.quant import QAT
assert config["Slim"]["quant"]["name"].lower(
) == 'pact', 'Only PACT quantization method is supported now'
QUANT_CONFIG["activation_preprocess_type"] = "PACT"
+ if mode in ["infer", "export"]:
+ QUANT_CONFIG['activation_preprocess_type'] = None
model.quanter = QAT(config=QUANT_CONFIG)
model.quanter.quantize(model)
logger.info("QAT model summary:")
diff --git a/ppcls/configs/Attr/StrongBaselineAttr.yaml b/ppcls/configs/Attr/StrongBaselineAttr.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..7501669bc5707fa2577c7d0b573a3b23cd2a0213
--- /dev/null
+++ b/ppcls/configs/Attr/StrongBaselineAttr.yaml
@@ -0,0 +1,114 @@
+# global configs
+Global:
+ checkpoints: null
+ pretrained_model: null
+ output_dir: "./output/"
+ device: "gpu"
+ save_interval: 5
+ eval_during_train: True
+ eval_interval: 1
+ epochs: 30
+ print_batch_step: 20
+ use_visualdl: False
+ # used for static mode and model export
+ image_shape: [3, 256, 192]
+ save_inference_dir: "./inference"
+ use_multilabel: True
+
+# model architecture
+Arch:
+ name: "ResNet50"
+ pretrained: True
+ class_num: 26
+
+# loss function config for traing/eval process
+Loss:
+ Train:
+ - MultiLabelLoss:
+ weight: 1.0
+ weight_ratio: True
+ size_sum: True
+ Eval:
+ - MultiLabelLoss:
+ weight: 1.0
+ weight_ratio: True
+ size_sum: True
+
+Optimizer:
+ name: Adam
+ lr:
+ name: Piecewise
+ decay_epochs: [12, 18, 24, 28]
+ values: [0.0001, 0.00001, 0.000001, 0.0000001]
+ regularizer:
+ name: 'L2'
+ coeff: 0.0005
+ clip_norm: 10
+
+# data loader for train and eval
+DataLoader:
+ Train:
+ dataset:
+ name: MultiLabelDataset
+ image_root: "dataset/attribute/data/"
+ cls_label_path: "dataset/attribute/trainval.txt"
+ label_ratio: True
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ size: [192, 256]
+ - Padv2:
+ size: [212, 276]
+ pad_mode: 1
+ fill_value: 0
+ - RandomCropImage:
+ size: [192, 256]
+ - RandFlipImage:
+ flip_code: 1
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: True
+ shuffle: True
+ loader:
+ num_workers: 4
+ use_shared_memory: True
+ Eval:
+ dataset:
+ name: MultiLabelDataset
+ image_root: "dataset/attribute/data/"
+ cls_label_path: "dataset/attribute/test.txt"
+ label_ratio: True
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ size: [192, 256]
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: False
+ shuffle: False
+ loader:
+ num_workers: 4
+ use_shared_memory: True
+
+
+Metric:
+ Eval:
+ - ATTRMetric:
+
+
diff --git a/ppcls/configs/ImageNet/Distillation/resnet34_distill_resnet18_dkd.yaml b/ppcls/configs/ImageNet/Distillation/resnet34_distill_resnet18_dkd.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..8efa5c054aed46380387c1df905742982a9c6c7d
--- /dev/null
+++ b/ppcls/configs/ImageNet/Distillation/resnet34_distill_resnet18_dkd.yaml
@@ -0,0 +1,155 @@
+# global configs
+Global:
+ checkpoints: null
+ pretrained_model: null
+ output_dir: "./output/"
+ device: "gpu"
+ save_interval: 1
+ eval_during_train: True
+ eval_interval: 1
+ epochs: 100
+ print_batch_step: 10
+ use_visualdl: False
+ # used for static mode and model export
+ image_shape: [3, 224, 224]
+ save_inference_dir: "./inference"
+
+# model architecture
+Arch:
+ name: "DistillationModel"
+ # if not null, its lengths should be same as models
+ pretrained_list:
+ # if not null, its lengths should be same as models
+ freeze_params_list:
+ - True
+ - False
+ models:
+ - Teacher:
+ name: ResNet34
+ pretrained: True
+
+ - Student:
+ name: ResNet18
+ pretrained: False
+
+ infer_model_name: "Student"
+
+
+# loss function config for traing/eval process
+Loss:
+ Train:
+ - DistillationGTCELoss:
+ weight: 1.0
+ model_names: ["Student"]
+ - DistillationDKDLoss:
+ weight: 1.0
+ model_name_pairs: [["Student", "Teacher"]]
+ temperature: 1
+ alpha: 1.0
+ beta: 1.0
+ Eval:
+ - CELoss:
+ weight: 1.0
+
+
+Optimizer:
+ name: Momentum
+ momentum: 0.9
+ weight_decay: 1e-4
+ lr:
+ name: MultiStepDecay
+ learning_rate: 0.2
+ milestones: [30, 60, 90]
+ step_each_epoch: 1
+ gamma: 0.1
+
+
+# data loader for train and eval
+DataLoader:
+ Train:
+ dataset:
+ name: ImageNetDataset
+ image_root: "./dataset/ILSVRC2012/"
+ cls_label_path: "./dataset/ILSVRC2012/train_list.txt"
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - RandCropImage:
+ size: 224
+ - RandFlipImage:
+ flip_code: 1
+ - NormalizeImage:
+ scale: 0.00392157
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 128
+ drop_last: False
+ shuffle: True
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+
+ Eval:
+ dataset:
+ name: ImageNetDataset
+ image_root: "./dataset/ILSVRC2012/"
+ cls_label_path: "./dataset/ILSVRC2012/val_list.txt"
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 0.00392157
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: False
+ shuffle: False
+ loader:
+ num_workers: 4
+ use_shared_memory: True
+
+Infer:
+ infer_imgs: "docs/images/inference_deployment/whl_demo.jpg"
+ batch_size: 10
+ transforms:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - ToCHWImage:
+ PostProcess:
+ name: DistillationPostProcess
+ func: Topk
+ topk: 5
+ class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt"
+
+Metric:
+ Train:
+ - DistillationTopkAcc:
+ model_key: "Student"
+ topk: [1, 5]
+ Eval:
+ - DistillationTopkAcc:
+ model_key: "Student"
+ topk: [1, 5]
diff --git a/ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml b/ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..eabccd4b712ab48886c74caf6b784b4c193f6913
--- /dev/null
+++ b/ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml
@@ -0,0 +1,164 @@
+# global configs
+Global:
+ checkpoints: null
+ pretrained_model: null
+ output_dir: ./output/
+ device: gpu
+ save_interval: 1
+ eval_during_train: True
+ eval_interval: 1
+ epochs: 600
+ print_batch_step: 10
+ use_visualdl: False
+ # used for static mode and model export
+ image_shape: [3, 224, 224]
+ save_inference_dir: ./inference
+ # training model under @to_static
+ to_static: False
+ use_dali: False
+
+# mixed precision training
+AMP:
+ scale_loss: 128.0
+ use_dynamic_loss_scaling: True
+ # O1: mixed fp16
+ level: O1
+
+# model architecture
+Arch:
+ name: PPHGNet_small
+ class_num: 1000
+
+# loss function config for traing/eval process
+Loss:
+ Train:
+ - CELoss:
+ weight: 1.0
+ epsilon: 0.1
+ Eval:
+ - CELoss:
+ weight: 1.0
+
+
+Optimizer:
+ name: Momentum
+ momentum: 0.9
+ lr:
+ name: Cosine
+ learning_rate: 0.5
+ warmup_epoch: 5
+ regularizer:
+ name: 'L2'
+ coeff: 0.00004
+
+
+# data loader for train and eval
+DataLoader:
+ Train:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/ILSVRC2012/
+ cls_label_path: ./dataset/ILSVRC2012/train_list.txt
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - RandCropImage:
+ size: 224
+ interpolation: bicubic
+ backend: pil
+ - RandFlipImage:
+ flip_code: 1
+ - TimmAutoAugment:
+ config_str: rand-m7-mstd0.5-inc1
+ interpolation: bicubic
+ img_size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - RandomErasing:
+ EPSILON: 0.25
+ sl: 0.02
+ sh: 1.0/3.0
+ r1: 0.3
+ attempt: 10
+ use_log_aspect: True
+ mode: pixel
+ batch_transform_ops:
+ - OpSampler:
+ MixupOperator:
+ alpha: 0.2
+ prob: 0.5
+ CutmixOperator:
+ alpha: 1.0
+ prob: 0.5
+
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 128
+ drop_last: False
+ shuffle: True
+ loader:
+ num_workers: 16
+ use_shared_memory: True
+
+ Eval:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/ILSVRC2012/
+ cls_label_path: ./dataset/ILSVRC2012/val_list.txt
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 236
+ interpolation: bicubic
+ backend: pil
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 128
+ drop_last: False
+ shuffle: False
+ loader:
+ num_workers: 16
+ use_shared_memory: True
+
+Infer:
+ infer_imgs: docs/images/inference_deployment/whl_demo.jpg
+ batch_size: 10
+ transforms:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 236
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - ToCHWImage:
+ PostProcess:
+ name: Topk
+ topk: 5
+ class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
+
+Metric:
+ Train:
+ - TopkAcc:
+ topk: [1, 5]
+ Eval:
+ - TopkAcc:
+ topk: [1, 5]
diff --git a/ppcls/configs/ImageNet/PPHGNet/PPHGNet_tiny.yaml b/ppcls/configs/ImageNet/PPHGNet/PPHGNet_tiny.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..e423c866b131aefda13b0186eca7ac27d3c84733
--- /dev/null
+++ b/ppcls/configs/ImageNet/PPHGNet/PPHGNet_tiny.yaml
@@ -0,0 +1,164 @@
+# global configs
+Global:
+ checkpoints: null
+ pretrained_model: null
+ output_dir: ./output/
+ device: gpu
+ save_interval: 1
+ eval_during_train: True
+ eval_interval: 1
+ epochs: 600
+ print_batch_step: 10
+ use_visualdl: False
+ # used for static mode and model export
+ image_shape: [3, 224, 224]
+ save_inference_dir: ./inference
+ # training model under @to_static
+ to_static: False
+ use_dali: False
+
+# mixed precision training
+AMP:
+ scale_loss: 128.0
+ use_dynamic_loss_scaling: True
+ # O1: mixed fp16
+ level: O1
+
+# model architecture
+Arch:
+ name: PPHGNet_tiny
+ class_num: 1000
+
+# loss function config for traing/eval process
+Loss:
+ Train:
+ - CELoss:
+ weight: 1.0
+ epsilon: 0.1
+ Eval:
+ - CELoss:
+ weight: 1.0
+
+
+Optimizer:
+ name: Momentum
+ momentum: 0.9
+ lr:
+ name: Cosine
+ learning_rate: 0.5
+ warmup_epoch: 5
+ regularizer:
+ name: 'L2'
+ coeff: 0.00004
+
+
+# data loader for train and eval
+DataLoader:
+ Train:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/ILSVRC2012/
+ cls_label_path: ./dataset/ILSVRC2012/train_list.txt
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - RandCropImage:
+ size: 224
+ interpolation: bicubic
+ backend: pil
+ - RandFlipImage:
+ flip_code: 1
+ - TimmAutoAugment:
+ config_str: rand-m7-mstd0.5-inc1
+ interpolation: bicubic
+ img_size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - RandomErasing:
+ EPSILON: 0.25
+ sl: 0.02
+ sh: 1.0/3.0
+ r1: 0.3
+ attempt: 10
+ use_log_aspect: True
+ mode: pixel
+ batch_transform_ops:
+ - OpSampler:
+ MixupOperator:
+ alpha: 0.2
+ prob: 0.5
+ CutmixOperator:
+ alpha: 1.0
+ prob: 0.5
+
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 128
+ drop_last: False
+ shuffle: True
+ loader:
+ num_workers: 16
+ use_shared_memory: True
+
+ Eval:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/ILSVRC2012/
+ cls_label_path: ./dataset/ILSVRC2012/val_list.txt
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 232
+ interpolation: bicubic
+ backend: pil
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 128
+ drop_last: False
+ shuffle: False
+ loader:
+ num_workers: 16
+ use_shared_memory: True
+
+Infer:
+ infer_imgs: docs/images/inference_deployment/whl_demo.jpg
+ batch_size: 10
+ transforms:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 232
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - ToCHWImage:
+ PostProcess:
+ name: Topk
+ topk: 5
+ class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
+
+Metric:
+ Train:
+ - TopkAcc:
+ topk: [1, 5]
+ Eval:
+ - TopkAcc:
+ topk: [1, 5]
diff --git a/ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml b/ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..640833938bd81d8dd24c8bdd0ae1de86d8697a10
--- /dev/null
+++ b/ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml
@@ -0,0 +1,133 @@
+# global configs
+Global:
+ checkpoints: null
+ pretrained_model: null
+ output_dir: ./output/
+ device: gpu
+ save_interval: 1
+ eval_during_train: True
+ eval_interval: 1
+ epochs: 480
+ print_batch_step: 10
+ use_visualdl: False
+ # used for static mode and model export
+ image_shape: [3, 224, 224]
+ save_inference_dir: ./inference
+
+# model architecture
+Arch:
+ name: PPLCNetV2_base
+ class_num: 1000
+
+# loss function config for traing/eval process
+Loss:
+ Train:
+ - CELoss:
+ weight: 1.0
+ epsilon: 0.1
+ Eval:
+ - CELoss:
+ weight: 1.0
+
+Optimizer:
+ name: Momentum
+ momentum: 0.9
+ lr:
+ name: Cosine
+ learning_rate: 0.8
+ warmup_epoch: 5
+ regularizer:
+ name: 'L2'
+ coeff: 0.00004
+
+# data loader for train and eval
+DataLoader:
+ Train:
+ dataset:
+ name: MultiScaleDataset
+ image_root: ./dataset/ILSVRC2012/
+ cls_label_path: ./dataset/ILSVRC2012/train_list.txt
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - RandCropImage:
+ size: 224
+ - RandFlipImage:
+ flip_code: 1
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+
+ # support to specify width and height respectively:
+ # scales: [(160,160), (192,192), (224,224) (288,288) (320,320)]
+ sampler:
+ name: MultiScaleSampler
+ scales: [160, 192, 224, 288, 320]
+ # first_bs: batch size for the first image resolution in the scales list
+ # divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple
+ first_bs: 500
+ divided_factor: 32
+ is_training: True
+ loader:
+ num_workers: 4
+ use_shared_memory: True
+
+ Eval:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/ILSVRC2012/
+ cls_label_path: ./dataset/ILSVRC2012/val_list.txt
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: False
+ shuffle: False
+ loader:
+ num_workers: 4
+ use_shared_memory: True
+
+Infer:
+ infer_imgs: docs/images/inference_deployment/whl_demo.jpg
+ batch_size: 10
+ transforms:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - ToCHWImage:
+ PostProcess:
+ name: Topk
+ topk: 5
+ class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
+
+Metric:
+ Train:
+ - TopkAcc:
+ topk: [1, 5]
+ Eval:
+ - TopkAcc:
+ topk: [1, 5]
diff --git a/ppcls/configs/ImageNet/ResNet/ResNet50_amp_O2_ultra.yaml b/ppcls/configs/ImageNet/ResNet/ResNet50_amp_O2_ultra.yaml
index 6a4425b4048ce5c2881ca5bc55e4902b5f50396b..01ba0169af8eaa58a3bf53b60be6249cb04bb737 100644
--- a/ppcls/configs/ImageNet/ResNet/ResNet50_amp_O2_ultra.yaml
+++ b/ppcls/configs/ImageNet/ResNet/ResNet50_amp_O2_ultra.yaml
@@ -105,7 +105,6 @@ DataLoader:
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- output_fp16: True
channel_num: *image_channel
sampler:
name: DistributedBatchSampler
@@ -132,7 +131,6 @@ Infer:
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- output_fp16: True
channel_num: *image_channel
- ToCHWImage:
PostProcess:
diff --git a/ppcls/configs/ImageNet/SENet/SE_ResNeXt101_32x4d_amp_O2_ultra.yaml b/ppcls/configs/ImageNet/SENet/SE_ResNeXt101_32x4d_amp_O2_ultra.yaml
index af987ed7f59ff9c9576d4fb417c48e112afa3986..72857c2cea5500cf3e728cc2edddf69343cc4814 100644
--- a/ppcls/configs/ImageNet/SENet/SE_ResNeXt101_32x4d_amp_O2_ultra.yaml
+++ b/ppcls/configs/ImageNet/SENet/SE_ResNeXt101_32x4d_amp_O2_ultra.yaml
@@ -15,6 +15,13 @@ Global:
image_shape: [*image_channel, 224, 224]
save_inference_dir: ./inference
+# mixed precision training
+AMP:
+ scale_loss: 128.0
+ use_dynamic_loss_scaling: True
+ # O2: pure fp16
+ level: O2
+
# model architecture
Arch:
name: SE_ResNeXt101_32x4d
@@ -32,13 +39,6 @@ Loss:
- CELoss:
weight: 1.0
-# mixed precision training
-AMP:
- scale_loss: 128.0
- use_dynamic_loss_scaling: True
- # O2: pure fp16
- level: O2
-
Optimizer:
name: Momentum
momentum: 0.9
@@ -99,10 +99,9 @@ DataLoader:
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- output_fp16: True
channel_num: *image_channel
sampler:
- name: BatchSampler
+ name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: False
@@ -126,7 +125,6 @@ Infer:
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- output_fp16: True
channel_num: *image_channel
- ToCHWImage:
PostProcess:
diff --git a/ppcls/configs/PULC/person/Distillation/PPLCNet_x1_0_distillation.yaml b/ppcls/configs/PULC/person/Distillation/PPLCNet_x1_0_distillation.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..afb9b43a0dfad4153bdc761a13c61a4d0e5fd47d
--- /dev/null
+++ b/ppcls/configs/PULC/person/Distillation/PPLCNet_x1_0_distillation.yaml
@@ -0,0 +1,168 @@
+# global configs
+Global:
+ checkpoints: null
+ pretrained_model: null
+ output_dir: ./output
+ device: gpu
+ save_interval: 1
+ eval_during_train: True
+ start_eval_epoch: 1
+ eval_interval: 1
+ epochs: 20
+ print_batch_step: 10
+ use_visualdl: False
+ # used for static mode and model export
+ image_shape: [3, 224, 224]
+ save_inference_dir: ./inference
+ # training model under @to_static
+ to_static: False
+ use_dali: False
+
+# model architecture
+Arch:
+ name: "DistillationModel"
+ class_num: &class_num 2
+ # if not null, its lengths should be same as models
+ pretrained_list:
+ # if not null, its lengths should be same as models
+ freeze_params_list:
+ - True
+ - False
+ use_sync_bn: True
+ models:
+ - Teacher:
+ name: ResNet101_vd
+ class_num: *class_num
+ - Student:
+ name: PPLCNet_x1_0
+ class_num: *class_num
+ pretrained: True
+ use_ssld: True
+
+ infer_model_name: "Student"
+
+# loss function config for traing/eval process
+Loss:
+ Train:
+ - DistillationDMLLoss:
+ weight: 1.0
+ model_name_pairs:
+ - ["Student", "Teacher"]
+ Eval:
+ - CELoss:
+ weight: 1.0
+
+
+Optimizer:
+ name: Momentum
+ momentum: 0.9
+ lr:
+ name: Cosine
+ learning_rate: 0.01
+ warmup_epoch: 5
+ regularizer:
+ name: 'L2'
+ coeff: 0.00004
+
+
+# data loader for train and eval
+DataLoader:
+ Train:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/person/
+ cls_label_path: ./dataset/person/train_list_for_distill.txt
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - RandCropImage:
+ size: 192
+ - RandFlipImage:
+ flip_code: 1
+ - TimmAutoAugment:
+ prob: 0.0
+ config_str: rand-m9-mstd0.5-inc1
+ interpolation: bicubic
+ img_size: 192
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - RandomErasing:
+ EPSILON: 0.1
+ sl: 0.02
+ sh: 1.0/3.0
+ r1: 0.3
+ attempt: 10
+ use_log_aspect: True
+ mode: pixel
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: False
+ shuffle: True
+ loader:
+ num_workers: 16
+ use_shared_memory: True
+
+ Eval:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/person/
+ cls_label_path: ./dataset/person/val_list.txt
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: False
+ shuffle: False
+ loader:
+ num_workers: 4
+ use_shared_memory: True
+
+Infer:
+ infer_imgs: docs/images/inference_deployment/whl_demo.jpg
+ batch_size: 10
+ transforms:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - ToCHWImage:
+ PostProcess:
+ name: ThreshOutput
+ threshold: 0.9
+ label_0: nobody
+ label_1: someone
+
+Metric:
+ Train:
+ - DistillationTopkAcc:
+ model_key: "Student"
+ topk: [1, 2]
+ Eval:
+ - TprAtFpr:
+ - TopkAcc:
+ topk: [1, 2]
diff --git a/ppcls/configs/PULC/person/OtherModels/MobileNetV3_large_x1_0.yaml b/ppcls/configs/PULC/person/OtherModels/MobileNetV3_large_x1_0.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..d69bb933fdbf5592d497651cad79995a492cdf28
--- /dev/null
+++ b/ppcls/configs/PULC/person/OtherModels/MobileNetV3_large_x1_0.yaml
@@ -0,0 +1,145 @@
+# global configs
+Global:
+ checkpoints: null
+ pretrained_model: null
+ output_dir: ./output/
+ device: gpu
+ save_interval: 1
+ eval_during_train: True
+ eval_interval: 1
+ start_eval_epoch: 10
+ epochs: 20
+ print_batch_step: 10
+ use_visualdl: False
+ # used for static mode and model export
+ image_shape: [3, 224, 224]
+ save_inference_dir: ./inference
+ # training model under @to_static
+ to_static: False
+ use_dali: False
+
+# mixed precision training
+AMP:
+ scale_loss: 128.0
+ use_dynamic_loss_scaling: True
+ # O1: mixed fp16
+ level: O1
+
+# model architecture
+Arch:
+ name: MobileNetV3_large_x1_0
+ class_num: 2
+ pretrained: True
+ use_sync_bn: True
+
+# loss function config for traing/eval process
+Loss:
+ Train:
+ - CELoss:
+ weight: 1.0
+ epsilon: 0.1
+ Eval:
+ - CELoss:
+ weight: 1.0
+
+
+Optimizer:
+ name: Momentum
+ momentum: 0.9
+ lr:
+ name: Cosine
+ learning_rate: 0.13
+ warmup_epoch: 5
+ regularizer:
+ name: 'L2'
+ coeff: 0.00002
+
+
+# data loader for train and eval
+DataLoader:
+ Train:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/person/
+ cls_label_path: ./dataset/person/train_list.txt
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - RandCropImage:
+ size: 224
+ - RandFlipImage:
+ flip_code: 1
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 512
+ drop_last: False
+ shuffle: True
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+
+ Eval:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/person/
+ cls_label_path: ./dataset/person/val_list.txt
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: False
+ shuffle: False
+ loader:
+ num_workers: 4
+ use_shared_memory: True
+
+Infer:
+ infer_imgs: docs/images/inference_deployment/whl_demo.jpg
+ batch_size: 10
+ transforms:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - ToCHWImage:
+ PostProcess:
+ name: ThreshOutput
+ threshold: 0.9
+ label_0: nobody
+ label_1: someone
+
+Metric:
+ Train:
+ - TopkAcc:
+ topk: [1, 2]
+ Eval:
+ - TprAtFpr:
+ - TopkAcc:
+ topk: [1, 2]
diff --git a/ppcls/configs/PULC/person/OtherModels/SwinTransformer_tiny_patch4_window7_224.yaml b/ppcls/configs/PULC/person/OtherModels/SwinTransformer_tiny_patch4_window7_224.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..0e2248e98529b511c7821b49ced6cf0625016553
--- /dev/null
+++ b/ppcls/configs/PULC/person/OtherModels/SwinTransformer_tiny_patch4_window7_224.yaml
@@ -0,0 +1,168 @@
+# global configs
+Global:
+ checkpoints: null
+ pretrained_model: null
+ output_dir: ./output/
+ device: gpu
+ save_interval: 1
+ eval_during_train: True
+ eval_interval: 1
+ start_eval_epoch: 10
+ epochs: 20
+ print_batch_step: 10
+ use_visualdl: False
+ # used for static mode and model export
+ image_shape: [3, 224, 224]
+ save_inference_dir: ./inference
+ # training model under @to_static
+ to_static: False
+ use_dali: False
+
+# mixed precision training
+AMP:
+ scale_loss: 128.0
+ use_dynamic_loss_scaling: True
+ # O1: mixed fp16
+ level: O1
+
+# model architecture
+Arch:
+ name: SwinTransformer_tiny_patch4_window7_224
+ class_num: 2
+ pretrained: True
+
+# loss function config for traing/eval process
+Loss:
+ Train:
+ - CELoss:
+ weight: 1.0
+ epsilon: 0.1
+ Eval:
+ - CELoss:
+ weight: 1.0
+
+Optimizer:
+ name: AdamW
+ beta1: 0.9
+ beta2: 0.999
+ epsilon: 1e-8
+ weight_decay: 0.05
+ no_weight_decay_name: absolute_pos_embed relative_position_bias_table .bias norm
+ one_dim_param_no_weight_decay: True
+ lr:
+ name: Cosine
+ learning_rate: 1e-4
+ eta_min: 2e-6
+ warmup_epoch: 5
+ warmup_start_lr: 2e-7
+
+
+# data loader for train and eval
+DataLoader:
+ Train:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/person/
+ cls_label_path: ./dataset/person/train_list.txt
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - RandCropImage:
+ size: 224
+ interpolation: bicubic
+ backend: pil
+ - RandFlipImage:
+ flip_code: 1
+ - TimmAutoAugment:
+ config_str: rand-m9-mstd0.5-inc1
+ interpolation: bicubic
+ img_size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - RandomErasing:
+ EPSILON: 0.25
+ sl: 0.02
+ sh: 1.0/3.0
+ r1: 0.3
+ attempt: 10
+ use_log_aspect: True
+ mode: pixel
+ batch_transform_ops:
+ - OpSampler:
+ MixupOperator:
+ alpha: 0.8
+ prob: 0.5
+ CutmixOperator:
+ alpha: 1.0
+ prob: 0.5
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 128
+ drop_last: False
+ shuffle: True
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+
+ Eval:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/person/
+ cls_label_path: ./dataset/person/val_list.txt
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: False
+ shuffle: False
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+
+Infer:
+ infer_imgs: docs/images/inference_deployment/whl_demo.jpg
+ batch_size: 10
+ transforms:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - ToCHWImage:
+ PostProcess:
+ name: ThreshOutput
+ threshold: 0.9
+ label_0: nobody
+ label_1: someone
+
+Metric:
+ Train:
+ - TopkAcc:
+ topk: [1, 2]
+ Eval:
+ - TprAtFpr:
+ - TopkAcc:
+ topk: [1, 2]
diff --git a/ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml b/ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..e196547923a345a9535f5b63a568817b2784c6d7
--- /dev/null
+++ b/ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml
@@ -0,0 +1,151 @@
+# global configs
+Global:
+ checkpoints: null
+ pretrained_model: null
+ output_dir: ./output/
+ device: gpu
+ save_interval: 1
+ eval_during_train: True
+ eval_interval: 1
+ start_eval_epoch: 10
+ epochs: 20
+ print_batch_step: 10
+ use_visualdl: False
+ # used for static mode and model export
+ image_shape: [3, 224, 224]
+ save_inference_dir: ./inference
+ # training model under @to_static
+ to_static: False
+ use_dali: False
+
+
+# model architecture
+Arch:
+ name: PPLCNet_x1_0
+ class_num: 2
+ pretrained: True
+ use_ssld: True
+ use_sync_bn: True
+
+# loss function config for traing/eval process
+Loss:
+ Train:
+ - CELoss:
+ weight: 1.0
+ Eval:
+ - CELoss:
+ weight: 1.0
+
+
+Optimizer:
+ name: Momentum
+ momentum: 0.9
+ lr:
+ name: Cosine
+ learning_rate: 0.01
+ warmup_epoch: 5
+ regularizer:
+ name: 'L2'
+ coeff: 0.00004
+
+
+# data loader for train and eval
+DataLoader:
+ Train:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/person/
+ cls_label_path: ./dataset/person/train_list.txt
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - RandCropImage:
+ size: 192
+ - RandFlipImage:
+ flip_code: 1
+ - TimmAutoAugment:
+ prob: 0.0
+ config_str: rand-m9-mstd0.5-inc1
+ interpolation: bicubic
+ img_size: 192
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - RandomErasing:
+ EPSILON: 0.1
+ sl: 0.02
+ sh: 1.0/3.0
+ r1: 0.3
+ attempt: 10
+ use_log_aspect: True
+ mode: pixel
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: False
+ shuffle: True
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+
+ Eval:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/person/
+ cls_label_path: ./dataset/person/val_list.txt
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: False
+ shuffle: False
+ loader:
+ num_workers: 4
+ use_shared_memory: True
+
+Infer:
+ infer_imgs: docs/images/inference_deployment/whl_demo.jpg
+ batch_size: 10
+ transforms:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - ToCHWImage:
+ PostProcess:
+ name: ThreshOutput
+ threshold: 0.9
+ label_0: nobody
+ label_1: someone
+
+Metric:
+ Train:
+ - TopkAcc:
+ topk: [1, 2]
+ Eval:
+ - TprAtFpr:
+ - TopkAcc:
+ topk: [1, 2]
diff --git a/ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0_search.yaml b/ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0_search.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..b2126b69f9d773d918df6b1f03361cac06ee44f8
--- /dev/null
+++ b/ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0_search.yaml
@@ -0,0 +1,151 @@
+# global configs
+Global:
+ checkpoints: null
+ pretrained_model: null
+ output_dir: ./output/
+ device: gpu
+ save_interval: 1
+ eval_during_train: True
+ eval_interval: 1
+ start_eval_epoch: 10
+ epochs: 20
+ print_batch_step: 10
+ use_visualdl: False
+ # used for static mode and model export
+ image_shape: [3, 224, 224]
+ save_inference_dir: ./inference
+ # training model under @to_static
+ to_static: False
+ use_dali: False
+
+
+# model architecture
+Arch:
+ name: PPLCNet_x1_0
+ class_num: 2
+ pretrained: True
+ use_ssld: True
+ use_sync_bn: True
+
+# loss function config for traing/eval process
+Loss:
+ Train:
+ - CELoss:
+ weight: 1.0
+ Eval:
+ - CELoss:
+ weight: 1.0
+
+
+Optimizer:
+ name: Momentum
+ momentum: 0.9
+ lr:
+ name: Cosine
+ learning_rate: 0.01
+ warmup_epoch: 5
+ regularizer:
+ name: 'L2'
+ coeff: 0.00004
+
+
+# data loader for train and eval
+DataLoader:
+ Train:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/person/
+ cls_label_path: ./dataset/person/train_list.txt
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - RandCropImage:
+ size: 224
+ - RandFlipImage:
+ flip_code: 1
+ - TimmAutoAugment:
+ prob: 0.0
+ config_str: rand-m9-mstd0.5-inc1
+ interpolation: bicubic
+ img_size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - RandomErasing:
+ EPSILON: 0.0
+ sl: 0.02
+ sh: 1.0/3.0
+ r1: 0.3
+ attempt: 10
+ use_log_aspect: True
+ mode: pixel
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: False
+ shuffle: True
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+
+ Eval:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/person/
+ cls_label_path: ./dataset/person/val_list.txt
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: False
+ shuffle: False
+ loader:
+ num_workers: 4
+ use_shared_memory: True
+
+Infer:
+ infer_imgs: docs/images/inference_deployment/whl_demo.jpg
+ batch_size: 10
+ transforms:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - ToCHWImage:
+ PostProcess:
+ name: ThreshOutput
+ threshold: 0.9
+ label_0: nobody
+ label_1: someone
+
+Metric:
+ Train:
+ - TopkAcc:
+ topk: [1, 2]
+ Eval:
+ - TprAtFpr:
+ - TopkAcc:
+ topk: [1, 2]
diff --git a/ppcls/configs/StrategySearch/person.yaml b/ppcls/configs/StrategySearch/person.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..906635595f33417cf564ca54a430c3c648fd738d
--- /dev/null
+++ b/ppcls/configs/StrategySearch/person.yaml
@@ -0,0 +1,40 @@
+base_config_file: ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0_search.yaml
+distill_config_file: ppcls/configs/PULC/person/Distillation/PPLCNet_x1_0_distillation.yaml
+
+gpus: 0,1,2,3
+output_dir: output/search_person
+search_times: 1
+search_dict:
+ - search_key: lrs
+ replace_config:
+ - Optimizer.lr.learning_rate
+ search_values: [0.0075, 0.01, 0.0125]
+ - search_key: resolutions
+ replace_config:
+ - DataLoader.Train.dataset.transform_ops.1.RandCropImage.size
+ - DataLoader.Train.dataset.transform_ops.3.TimmAutoAugment.img_size
+ search_values: [176, 192, 224]
+ - search_key: ra_probs
+ replace_config:
+ - DataLoader.Train.dataset.transform_ops.3.TimmAutoAugment.prob
+ search_values: [0.0, 0.1, 0.5]
+ - search_key: re_probs
+ replace_config:
+ - DataLoader.Train.dataset.transform_ops.5.RandomErasing.EPSILON
+ search_values: [0.0, 0.1, 0.5]
+ - search_key: lr_mult_list
+ replace_config:
+ - Arch.lr_mult_list
+ search_values:
+ - [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]
+ - [0.0, 0.4, 0.4, 0.8, 0.8, 1.0]
+ - [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
+teacher:
+ rm_keys:
+ - Arch.lr_mult_list
+ search_values:
+ - ResNet101_vd
+ - ResNet50_vd
+final_replace:
+ Arch.lr_mult_list: Arch.models.1.Student.lr_mult_list
+
diff --git a/ppcls/configs/multi_scale/MobileNetV1_multi_scale.yaml b/ppcls/configs/multi_scale/MobileNetV1_multi_scale.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..530e7507519ed37dd1126633738c903769fe697e
--- /dev/null
+++ b/ppcls/configs/multi_scale/MobileNetV1_multi_scale.yaml
@@ -0,0 +1,138 @@
+# global configs
+Global:
+ checkpoints: null
+ pretrained_model: null
+ output_dir: ./output/
+ device: gpu
+ save_interval: 1
+ eval_during_train: True
+ eval_interval: 1
+ epochs: 120
+ print_batch_step: 10
+ use_visualdl: False
+ # used for static mode and model export
+ image_shape: [3, 224, 224]
+ save_inference_dir: ./inference
+ # training model under @to_static
+ to_static: False
+
+# model architecture
+Arch:
+ name: MobileNetV1
+ class_num: 1000
+
+# loss function config for traing/eval process
+Loss:
+ Train:
+ - CELoss:
+ weight: 1.0
+ Eval:
+ - CELoss:
+ weight: 1.0
+
+
+Optimizer:
+ name: Momentum
+ momentum: 0.9
+ lr:
+ name: Piecewise
+ learning_rate: 0.1
+ decay_epochs: [30, 60, 90]
+ values: [0.1, 0.01, 0.001, 0.0001]
+ regularizer:
+ name: 'L2'
+ coeff: 0.00003
+
+
+# data loader for train and eval
+DataLoader:
+ Train:
+ dataset:
+ name: MultiScaleDataset
+ image_root: ./dataset/ILSVRC2012/
+ cls_label_path: ./dataset/ILSVRC2012/train_list.txt
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - RandCropImage:
+ size: 224
+ - RandFlipImage:
+ flip_code: 1
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+
+ # support to specify width and height respectively:
+ # scales: [(160,160), (192,192), (224,224) (288,288) (320,320)]
+ sampler:
+ name: MultiScaleSampler
+ scales: [160, 192, 224, 288, 320]
+ # first_bs: batch size for the first image resolution in the scales list
+ # divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple
+ first_bs: 64
+ divided_factor: 32
+ is_training: True
+
+ loader:
+ num_workers: 4
+ use_shared_memory: True
+
+ Eval:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/ILSVRC2012/
+ cls_label_path: ./dataset/ILSVRC2012/val_list.txt
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: False
+ shuffle: False
+ loader:
+ num_workers: 4
+ use_shared_memory: True
+
+Infer:
+ infer_imgs: docs/images/whl/demo.jpg
+ batch_size: 10
+ transforms:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - ToCHWImage:
+ PostProcess:
+ name: Topk
+ topk: 5
+ class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
+
+Metric:
+ Train:
+ - TopkAcc:
+ topk: [1, 5]
+ Eval:
+ - TopkAcc:
+ topk: [1, 5]
diff --git a/ppcls/configs/Pedestrian/strong_baseline_baseline.yaml b/ppcls/configs/reid/strong_baseline/baseline.yaml
similarity index 90%
rename from ppcls/configs/Pedestrian/strong_baseline_baseline.yaml
rename to ppcls/configs/reid/strong_baseline/baseline.yaml
index a0395f3b129bd0f2148e0e9cfd62dadaf8692ff9..35980206b19bab76f46df54e143adaecc1f4b566 100644
--- a/ppcls/configs/Pedestrian/strong_baseline_baseline.yaml
+++ b/ppcls/configs/reid/strong_baseline/baseline.yaml
@@ -12,6 +12,7 @@ Global:
use_visualdl: False
eval_mode: "retrieval"
retrieval_feature_from: "backbone" # 'backbone' or 'neck'
+ re_ranking: False
# used for static mode and model export
image_shape: [3, 256, 128]
save_inference_dir: "./inference"
@@ -31,6 +32,14 @@ Arch:
name: "FC"
embedding_size: 2048
class_num: 751
+ weight_attr:
+ initializer:
+ name: KaimingUniform
+ fan_in: 12288 # 6*embedding_size
+ bias_attr:
+ initializer:
+ name: KaimingUniform
+ fan_in: 12288 # 6*embedding_size
# loss function config for traing/eval process
Loss:
@@ -52,7 +61,6 @@ Optimizer:
name: Piecewise
decay_epochs: [40, 70]
values: [0.00035, 0.000035, 0.0000035]
- warmup_epoch: 10
by_epoch: True
last_epoch: 0
regularizer:
@@ -71,6 +79,7 @@ DataLoader:
- ResizeImage:
size: [128, 256]
return_numpy: False
+ interpolation: 'bilinear'
backend: "pil"
- RandFlipImage:
flip_code: 1
@@ -102,6 +111,7 @@ DataLoader:
- ResizeImage:
size: [128, 256]
return_numpy: False
+ interpolation: 'bilinear'
backend: "pil"
- ToTensor:
- Normalize:
@@ -126,6 +136,7 @@ DataLoader:
- ResizeImage:
size: [128, 256]
return_numpy: False
+ interpolation: 'bilinear'
backend: "pil"
- ToTensor:
- Normalize:
diff --git a/ppcls/configs/Pedestrian/strong_baseline_m1.yaml b/ppcls/configs/reid/strong_baseline/softmax_triplet.yaml
similarity index 96%
rename from ppcls/configs/Pedestrian/strong_baseline_m1.yaml
rename to ppcls/configs/reid/strong_baseline/softmax_triplet.yaml
index ef4b605aee5de905494b67beda0bd545a8b12fcb..6f9cd955626316fe5267e3f9289b93b4317f736f 100644
--- a/ppcls/configs/Pedestrian/strong_baseline_m1.yaml
+++ b/ppcls/configs/reid/strong_baseline/softmax_triplet.yaml
@@ -12,6 +12,7 @@ Global:
use_visualdl: False
eval_mode: "retrieval"
retrieval_feature_from: "features" # 'backbone' or 'features'
+ re_ranking: False
# used for static mode and model export
image_shape: [3, 256, 128]
save_inference_dir: "./inference"
@@ -90,6 +91,7 @@ DataLoader:
- ResizeImage:
size: [128, 256]
return_numpy: False
+ interpolation: 'bilinear'
backend: "pil"
- RandFlipImage:
flip_code: 1
@@ -127,6 +129,7 @@ DataLoader:
- ResizeImage:
size: [128, 256]
return_numpy: False
+ interpolation: 'bilinear'
backend: "pil"
- ToTensor:
- Normalize:
@@ -151,6 +154,7 @@ DataLoader:
- ResizeImage:
size: [128, 256]
return_numpy: False
+ interpolation: 'bilinear'
backend: "pil"
- ToTensor:
- Normalize:
diff --git a/ppcls/configs/Pedestrian/strong_baseline_m1_centerloss.yaml b/ppcls/configs/reid/strong_baseline/softmax_triplet_with_center.yaml
similarity index 96%
rename from ppcls/configs/Pedestrian/strong_baseline_m1_centerloss.yaml
rename to ppcls/configs/reid/strong_baseline/softmax_triplet_with_center.yaml
index 6c14bb209875354d9bc0e485aa4aa8b910d116b9..22af5e516ca4b9945bc8413ed56c67c972b48609 100644
--- a/ppcls/configs/Pedestrian/strong_baseline_m1_centerloss.yaml
+++ b/ppcls/configs/reid/strong_baseline/softmax_triplet_with_center.yaml
@@ -12,6 +12,7 @@ Global:
use_visualdl: False
eval_mode: "retrieval"
retrieval_feature_from: "features" # 'backbone' or 'features'
+ re_ranking: False
# used for static mode and model export
image_shape: [3, 256, 128]
save_inference_dir: "./inference"
@@ -101,6 +102,7 @@ DataLoader:
- ResizeImage:
size: [128, 256]
return_numpy: False
+ interpolation: 'bilinear'
backend: "pil"
- RandFlipImage:
flip_code: 1
@@ -138,6 +140,7 @@ DataLoader:
- ResizeImage:
size: [128, 256]
return_numpy: False
+ interpolation: 'bilinear'
backend: "pil"
- ToTensor:
- Normalize:
@@ -162,6 +165,7 @@ DataLoader:
- ResizeImage:
size: [128, 256]
return_numpy: False
+ interpolation: 'bilinear'
backend: "pil"
- ToTensor:
- Normalize:
diff --git a/ppcls/data/__init__.py b/ppcls/data/__init__.py
index 3109ec8e40ec6cc9154d339f5b49a57235bf3abb..80cf3bc9af826e935fe0fe6ccf8cad8d6924d370 100644
--- a/ppcls/data/__init__.py
+++ b/ppcls/data/__init__.py
@@ -28,13 +28,16 @@ from ppcls.data.dataloader.vehicle_dataset import CompCars, VeriWild
from ppcls.data.dataloader.logo_dataset import LogoDataset
from ppcls.data.dataloader.icartoon_dataset import ICartoonDataset
from ppcls.data.dataloader.mix_dataset import MixDataset
+from ppcls.data.dataloader.multi_scale_dataset import MultiScaleDataset
from ppcls.data.dataloader.person_dataset import Market1501, MSMT17
from ppcls.data.dataloader.face_dataset import FiveValidationDataset, AdaFaceDataset
+
# sampler
from ppcls.data.dataloader.DistributedRandomIdentitySampler import DistributedRandomIdentitySampler
from ppcls.data.dataloader.pk_sampler import PKSampler
from ppcls.data.dataloader.mix_sampler import MixSampler
+from ppcls.data.dataloader.multi_scale_sampler import MultiScaleSampler
from ppcls.data import preprocess
from ppcls.data.preprocess import transform
diff --git a/ppcls/data/dataloader/__init__.py b/ppcls/data/dataloader/__init__.py
index ba1e57535284a6088e92c7fd8e8a019929c2683a..796f4b458410e5b4b8540b72dd663711c4ad9f46 100644
--- a/ppcls/data/dataloader/__init__.py
+++ b/ppcls/data/dataloader/__init__.py
@@ -5,7 +5,9 @@ from ppcls.data.dataloader.vehicle_dataset import CompCars, VeriWild
from ppcls.data.dataloader.logo_dataset import LogoDataset
from ppcls.data.dataloader.icartoon_dataset import ICartoonDataset
from ppcls.data.dataloader.mix_dataset import MixDataset
+from ppcls.data.dataloader.multi_scale_dataset import MultiScaleDataset
from ppcls.data.dataloader.mix_sampler import MixSampler
+from ppcls.data.dataloader.multi_scale_sampler import MultiScaleSampler
from ppcls.data.dataloader.pk_sampler import PKSampler
from ppcls.data.dataloader.person_dataset import Market1501, MSMT17
from ppcls.data.dataloader.face_dataset import AdaFaceDataset, FiveValidationDataset
diff --git a/ppcls/data/dataloader/common_dataset.py b/ppcls/data/dataloader/common_dataset.py
index b7b03d8b9e06aa7aa190fb325c2221db3b666c5c..88bab0f1d059a53b5dc062a25e7286637086abb7 100644
--- a/ppcls/data/dataloader/common_dataset.py
+++ b/ppcls/data/dataloader/common_dataset.py
@@ -44,11 +44,11 @@ def create_operators(params):
class CommonDataset(Dataset):
- def __init__(
- self,
- image_root,
- cls_label_path,
- transform_ops=None, ):
+ def __init__(self,
+ image_root,
+ cls_label_path,
+ transform_ops=None,
+ label_ratio=False):
self._img_root = image_root
self._cls_path = cls_label_path
if transform_ops:
@@ -56,7 +56,10 @@ class CommonDataset(Dataset):
self.images = []
self.labels = []
- self._load_anno()
+ if label_ratio:
+ self.label_ratio = self._load_anno(label_ratio=label_ratio)
+ else:
+ self._load_anno()
def _load_anno(self):
pass
diff --git a/ppcls/data/dataloader/dali.py b/ppcls/data/dataloader/dali.py
index a15c231568a97fd607f2ada4f5f6e81fa084cc62..a340a946c921bedd475531eb3bd9172f49a99e1e 100644
--- a/ppcls/data/dataloader/dali.py
+++ b/ppcls/data/dataloader/dali.py
@@ -230,7 +230,7 @@ def dali_dataloader(config, mode, device, seed=None):
lower = ratio[0]
upper = ratio[1]
- if 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env:
+ if 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env and 'FLAGS_selected_gpus' in env:
shard_id = int(env['PADDLE_TRAINER_ID'])
num_shards = int(env['PADDLE_TRAINERS_NUM'])
device_id = int(env['FLAGS_selected_gpus'])
@@ -282,7 +282,7 @@ def dali_dataloader(config, mode, device, seed=None):
else:
resize_shorter = transforms["ResizeImage"].get("resize_short", 256)
crop = transforms["CropImage"]["size"]
- if 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env and sampler_name == "DistributedBatchSampler":
+ if 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env and 'FLAGS_selected_gpus' in env and sampler_name == "DistributedBatchSampler":
shard_id = int(env['PADDLE_TRAINER_ID'])
num_shards = int(env['PADDLE_TRAINERS_NUM'])
device_id = int(env['FLAGS_selected_gpus'])
diff --git a/ppcls/data/dataloader/multi_scale_dataset.py b/ppcls/data/dataloader/multi_scale_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..ddddf35ef5feca9817e380025d85a34b3989f12f
--- /dev/null
+++ b/ppcls/data/dataloader/multi_scale_dataset.py
@@ -0,0 +1,107 @@
+# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import print_function
+
+import numpy as np
+import os
+
+from paddle.io import Dataset
+from paddle.vision import transforms
+import cv2
+import warnings
+
+from ppcls.data import preprocess
+from ppcls.data.preprocess import transform
+from ppcls.data.preprocess.ops.operators import DecodeImage
+from ppcls.utils import logger
+from ppcls.data.dataloader.common_dataset import create_operators
+
+
+class MultiScaleDataset(Dataset):
+ def __init__(
+ self,
+ image_root,
+ cls_label_path,
+ transform_ops=None, ):
+ self._img_root = image_root
+ self._cls_path = cls_label_path
+ self.transform_ops = transform_ops
+ self.images = []
+ self.labels = []
+ self._load_anno()
+ self.has_crop_flag = 1
+
+ def _load_anno(self, seed=None):
+ assert os.path.exists(self._cls_path)
+ assert os.path.exists(self._img_root)
+ self.images = []
+ self.labels = []
+
+ with open(self._cls_path) as fd:
+ lines = fd.readlines()
+ if seed is not None:
+ np.random.RandomState(seed).shuffle(lines)
+ for l in lines:
+ l = l.strip().split(" ")
+ self.images.append(os.path.join(self._img_root, l[0]))
+ self.labels.append(np.int64(l[1]))
+ assert os.path.exists(self.images[-1])
+
+ def __getitem__(self, properties):
+ # properites is a tuple, contains (width, height, index)
+ img_width = properties[0]
+ img_height = properties[1]
+ index = properties[2]
+ has_crop = False
+ if self.transform_ops:
+ for i in range(len(self.transform_ops)):
+ op = self.transform_ops[i]
+ resize_op = ['RandCropImage', 'ResizeImage', 'CropImage']
+ for resize in resize_op:
+ if resize in op:
+ if self.has_crop_flag:
+ logger.warning(
+ "Multi scale dataset will crop image according to the multi scale resolution"
+ )
+ self.transform_ops[i][resize] = {
+ 'size': (img_width, img_height)
+ }
+ has_crop = True
+ self.has_crop_flag = 0
+ if has_crop == False:
+ logger.error("Multi scale dateset requests RandCropImage")
+ raise RuntimeError("Multi scale dateset requests RandCropImage")
+ self._transform_ops = create_operators(self.transform_ops)
+
+ try:
+ with open(self.images[index], 'rb') as f:
+ img = f.read()
+ if self._transform_ops:
+ img = transform(img, self._transform_ops)
+ img = img.transpose((2, 0, 1))
+ return (img, self.labels[index])
+
+ except Exception as ex:
+ logger.error("Exception occured when parse line: {} with msg: {}".
+ format(self.images[index], ex))
+ rnd_idx = np.random.randint(self.__len__())
+ return self.__getitem__(rnd_idx)
+
+ def __len__(self):
+ return len(self.images)
+
+ @property
+ def class_num(self):
+ return len(set(self.labels))
diff --git a/ppcls/data/dataloader/multi_scale_sampler.py b/ppcls/data/dataloader/multi_scale_sampler.py
new file mode 100644
index 0000000000000000000000000000000000000000..57b42b307dfb223c2ab434a89fc6c56b4e1e4a5c
--- /dev/null
+++ b/ppcls/data/dataloader/multi_scale_sampler.py
@@ -0,0 +1,132 @@
+from paddle.io import Sampler
+import paddle.distributed as dist
+
+import math
+import random
+import numpy as np
+
+from ppcls import data
+
+
+class MultiScaleSampler(Sampler):
+ def __init__(self,
+ data_source,
+ scales,
+ first_bs,
+ divided_factor=32,
+ is_training=True,
+ seed=None):
+ """
+ multi scale samper
+ Args:
+ data_source(dataset)
+ scales(list): several scales for image resolution
+ first_bs(int): batch size for the first scale in scales
+ divided_factor(int): ImageNet models down-sample images by a factor, ensure that width and height dimensions are multiples are multiple of devided_factor.
+ is_training(boolean): mode
+ """
+ # min. and max. spatial dimensions
+ self.data_source = data_source
+ self.n_data_samples = len(self.data_source)
+
+ if isinstance(scales[0], tuple):
+ width_dims = [i[0] for i in scales]
+ height_dims = [i[1] for i in scales]
+ elif isinstance(scales[0], int):
+ width_dims = scales
+ height_dims = scales
+ base_im_w = width_dims[0]
+ base_im_h = height_dims[0]
+ base_batch_size = first_bs
+
+ # Get the GPU and node related information
+ num_replicas = dist.get_world_size()
+ rank = dist.get_rank()
+ # adjust the total samples to avoid batch dropping
+ num_samples_per_replica = int(
+ math.ceil(self.n_data_samples * 1.0 / num_replicas))
+ img_indices = [idx for idx in range(self.n_data_samples)]
+
+ self.shuffle = False
+ if is_training:
+ # compute the spatial dimensions and corresponding batch size
+ # ImageNet models down-sample images by a factor of 32.
+ # Ensure that width and height dimensions are multiples are multiple of 32.
+ width_dims = [
+ int((w // divided_factor) * divided_factor) for w in width_dims
+ ]
+ height_dims = [
+ int((h // divided_factor) * divided_factor)
+ for h in height_dims
+ ]
+
+ img_batch_pairs = list()
+ base_elements = base_im_w * base_im_h * base_batch_size
+ for (h, w) in zip(height_dims, width_dims):
+ batch_size = int(max(1, (base_elements / (h * w))))
+ img_batch_pairs.append((w, h, batch_size))
+ self.img_batch_pairs = img_batch_pairs
+ self.shuffle = True
+ else:
+ self.img_batch_pairs = [(base_im_w, base_im_h, base_batch_size)]
+
+ self.img_indices = img_indices
+ self.n_samples_per_replica = num_samples_per_replica
+ self.epoch = 0
+ self.rank = rank
+ self.num_replicas = num_replicas
+ self.seed = seed
+ self.batch_list = []
+ self.current = 0
+ indices_rank_i = self.img_indices[self.rank:len(self.img_indices):
+ self.num_replicas]
+ while self.current < self.n_samples_per_replica:
+ curr_w, curr_h, curr_bsz = random.choice(self.img_batch_pairs)
+
+ end_index = min(self.current + curr_bsz,
+ self.n_samples_per_replica)
+
+ batch_ids = indices_rank_i[self.current:end_index]
+ n_batch_samples = len(batch_ids)
+ if n_batch_samples != curr_bsz:
+ batch_ids += indices_rank_i[:(curr_bsz - n_batch_samples)]
+ self.current += curr_bsz
+
+ if len(batch_ids) > 0:
+ batch = [curr_w, curr_h, len(batch_ids)]
+ self.batch_list.append(batch)
+ self.length = len(self.batch_list)
+
+ def __iter__(self):
+ if self.shuffle:
+ if self.seed is not None:
+ random.seed(self.seed)
+ else:
+ random.seed(self.epoch)
+ random.shuffle(self.img_indices)
+ random.shuffle(self.img_batch_pairs)
+ indices_rank_i = self.img_indices[self.rank:len(self.img_indices):
+ self.num_replicas]
+ else:
+ indices_rank_i = self.img_indices[self.rank:len(self.img_indices):
+ self.num_replicas]
+
+ start_index = 0
+ for batch_tuple in self.batch_list:
+ curr_w, curr_h, curr_bsz = batch_tuple
+ end_index = min(start_index + curr_bsz, self.n_samples_per_replica)
+ batch_ids = indices_rank_i[start_index:end_index]
+ n_batch_samples = len(batch_ids)
+ if n_batch_samples != curr_bsz:
+ batch_ids += indices_rank_i[:(curr_bsz - n_batch_samples)]
+ start_index += curr_bsz
+
+ if len(batch_ids) > 0:
+ batch = [(curr_w, curr_h, b_id) for b_id in batch_ids]
+ yield batch
+
+ def set_epoch(self, epoch: int):
+ self.epoch = epoch
+
+ def __len__(self):
+ return self.length
diff --git a/ppcls/data/dataloader/multilabel_dataset.py b/ppcls/data/dataloader/multilabel_dataset.py
index 2c1ed770388035d2a9fa5a670948d9e1623a0406..25dfc12b5730129dcb54bfd6eab95a440560b4aa 100644
--- a/ppcls/data/dataloader/multilabel_dataset.py
+++ b/ppcls/data/dataloader/multilabel_dataset.py
@@ -25,7 +25,7 @@ from .common_dataset import CommonDataset
class MultiLabelDataset(CommonDataset):
- def _load_anno(self):
+ def _load_anno(self, label_ratio=False):
assert os.path.exists(self._cls_path)
assert os.path.exists(self._img_root)
self.images = []
@@ -41,6 +41,8 @@ class MultiLabelDataset(CommonDataset):
self.labels.append(labels)
assert os.path.exists(self.images[-1])
+ if label_ratio:
+ return np.array(self.labels).mean(0).astype("float32")
def __getitem__(self, idx):
try:
@@ -50,7 +52,10 @@ class MultiLabelDataset(CommonDataset):
img = transform(img, self._transform_ops)
img = img.transpose((2, 0, 1))
label = np.array(self.labels[idx]).astype("float32")
- return (img, label)
+ if self.label_ratio is not None:
+ return (img, np.array([label, self.label_ratio]))
+ else:
+ return (img, label)
except Exception as ex:
logger.error("Exception occured when parse line: {} with msg: {}".
diff --git a/ppcls/data/postprocess/__init__.py b/ppcls/data/postprocess/__init__.py
index 831a4da0008ba70824203be3a6f46c9700225457..54678dc443ebab5bf55d54d9284d328bbc4523b3 100644
--- a/ppcls/data/postprocess/__init__.py
+++ b/ppcls/data/postprocess/__init__.py
@@ -14,9 +14,10 @@
import copy
import importlib
-from . import topk
+from . import topk, threshoutput
from .topk import Topk, MultiLabelTopk
+from .threshoutput import ThreshOutput
def build_postprocess(config):
diff --git a/ppcls/data/postprocess/threshoutput.py b/ppcls/data/postprocess/threshoutput.py
new file mode 100644
index 0000000000000000000000000000000000000000..607aecbfdeae018a5334f723effd658fb480713a
--- /dev/null
+++ b/ppcls/data/postprocess/threshoutput.py
@@ -0,0 +1,36 @@
+# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import paddle.nn.functional as F
+
+
+class ThreshOutput(object):
+ def __init__(self, threshold, label_0="0", label_1="1"):
+ self.threshold = threshold
+ self.label_0 = label_0
+ self.label_1 = label_1
+
+ def __call__(self, x, file_names=None):
+ y = []
+ x = F.softmax(x, axis=-1).numpy()
+ for idx, probs in enumerate(x):
+ score = probs[1]
+ if score < self.threshold:
+ result = {"class_ids": [0], "scores": [1 - score], "label_names": [self.label_0]}
+ else:
+ result = {"class_ids": [1], "scores": [score], "label_names": [self.label_1]}
+ if file_names is not None:
+ result["file_name"] = file_names[idx]
+ y.append(result)
+ return y
diff --git a/ppcls/data/preprocess/__init__.py b/ppcls/data/preprocess/__init__.py
index aede295a89af6289252e9120172e174259a612ad..d0cfcf2409d2d890adcf03ef0e03b2475625ead8 100644
--- a/ppcls/data/preprocess/__init__.py
+++ b/ppcls/data/preprocess/__init__.py
@@ -37,11 +37,14 @@ from ppcls.data.preprocess.ops.operators import RandomHorizontalFlip
from ppcls.data.preprocess.ops.operators import CropWithPadding
from ppcls.data.preprocess.ops.operators import RandomInterpolationAugment
from ppcls.data.preprocess.ops.operators import ColorJitter
+from ppcls.data.preprocess.ops.operators import RandomCropImage
+from ppcls.data.preprocess.ops.operators import Padv2
from ppcls.data.preprocess.batch_ops.batch_operators import MixupOperator, CutmixOperator, OpSampler, FmixOperator
import numpy as np
from PIL import Image
+import random
def transform(data, ops=[]):
@@ -92,16 +95,16 @@ class RandAugment(RawRandAugment):
class TimmAutoAugment(RawTimmAutoAugment):
""" TimmAutoAugment wrapper to auto fit different img tyeps. """
- def __init__(self, *args, **kwargs):
+ def __init__(self, prob=1.0, *args, **kwargs):
super().__init__(*args, **kwargs)
+ self.prob = prob
def __call__(self, img):
if not isinstance(img, Image.Image):
img = np.ascontiguousarray(img)
img = Image.fromarray(img)
-
- img = super().__call__(img)
-
+ if random.random() < self.prob:
+ img = super().__call__(img)
if isinstance(img, Image.Image):
img = np.asarray(img)
diff --git a/ppcls/data/preprocess/ops/operators.py b/ppcls/data/preprocess/ops/operators.py
index cbd9e1990951884d17e4a2b6eb962a653a2e8d77..d31ec4b8c4f40dcaa4d53b864996725c7138a393 100644
--- a/ppcls/data/preprocess/ops/operators.py
+++ b/ppcls/data/preprocess/ops/operators.py
@@ -272,6 +272,105 @@ class CropImage(object):
return img[h_start:h_end, w_start:w_end, :]
+class Padv2(object):
+ def __init__(self,
+ size=None,
+ size_divisor=32,
+ pad_mode=0,
+ offsets=None,
+ fill_value=(127.5, 127.5, 127.5)):
+ """
+ Pad image to a specified size or multiple of size_divisor.
+ Args:
+ size (int, list): image target size, if None, pad to multiple of size_divisor, default None
+ size_divisor (int): size divisor, default 32
+ pad_mode (int): pad mode, currently only supports four modes [-1, 0, 1, 2]. if -1, use specified offsets
+ if 0, only pad to right and bottom. if 1, pad according to center. if 2, only pad left and top
+ offsets (list): [offset_x, offset_y], specify offset while padding, only supported pad_mode=-1
+ fill_value (bool): rgb value of pad area, default (127.5, 127.5, 127.5)
+ """
+
+ if not isinstance(size, (int, list)):
+ raise TypeError(
+ "Type of target_size is invalid when random_size is True. \
+ Must be List, now is {}".format(type(size)))
+
+ if isinstance(size, int):
+ size = [size, size]
+
+ assert pad_mode in [
+ -1, 0, 1, 2
+ ], 'currently only supports four modes [-1, 0, 1, 2]'
+ if pad_mode == -1:
+ assert offsets, 'if pad_mode is -1, offsets should not be None'
+
+ self.size = size
+ self.size_divisor = size_divisor
+ self.pad_mode = pad_mode
+ self.fill_value = fill_value
+ self.offsets = offsets
+
+ def apply_image(self, image, offsets, im_size, size):
+ x, y = offsets
+ im_h, im_w = im_size
+ h, w = size
+ canvas = np.ones((h, w, 3), dtype=np.float32)
+ canvas *= np.array(self.fill_value, dtype=np.float32)
+ canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32)
+ return canvas
+
+ def __call__(self, img):
+ im_h, im_w = img.shape[:2]
+ if self.size:
+ w, h = self.size
+ assert (
+ im_h <= h and im_w <= w
+ ), '(h, w) of target size should be greater than (im_h, im_w)'
+ else:
+ h = int(np.ceil(im_h / self.size_divisor) * self.size_divisor)
+ w = int(np.ceil(im_w / self.size_divisor) * self.size_divisor)
+
+ if h == im_h and w == im_w:
+ return img.astype(np.float32)
+
+ if self.pad_mode == -1:
+ offset_x, offset_y = self.offsets
+ elif self.pad_mode == 0:
+ offset_y, offset_x = 0, 0
+ elif self.pad_mode == 1:
+ offset_y, offset_x = (h - im_h) // 2, (w - im_w) // 2
+ else:
+ offset_y, offset_x = h - im_h, w - im_w
+
+ offsets, im_size, size = [offset_x, offset_y], [im_h, im_w], [h, w]
+
+ return self.apply_image(img, offsets, im_size, size)
+
+
+class RandomCropImage(object):
+ """Random crop image only
+ """
+
+ def __init__(self, size):
+ super(RandomCropImage, self).__init__()
+ if isinstance(size, int):
+ size = [size, size]
+ self.size = size
+
+ def __call__(self, img):
+
+ h, w = img.shape[:2]
+ tw, th = self.size
+ i = random.randint(0, h - th)
+ j = random.randint(0, w - tw)
+
+ img = img[i:i + th, j:j + tw, :]
+ if img.shape[0] != 256 or img.shape[1] != 192:
+ raise ValueError('sample: ', h, w, i, j, th, tw, img.shape)
+
+ return img
+
+
class RandCropImage(object):
""" random crop image """
diff --git a/ppcls/engine/engine.py b/ppcls/engine/engine.py
index ced953d5ae6550a058f8a4a567f29f5689f0c9d9..60a77c95ece010bc6c146d8665b83a7c01124679 100644
--- a/ppcls/engine/engine.py
+++ b/ppcls/engine/engine.py
@@ -190,7 +190,7 @@ class Engine(object):
self.eval_metric_func = None
# build model
- self.model = build_model(self.config)
+ self.model = build_model(self.config, self.mode)
# set @to_static for benchmark, skip this by default.
apply_to_static(self.config, self.model)
@@ -240,7 +240,7 @@ class Engine(object):
self.amp_eval = self.config["AMP"].get("use_fp16_test", False)
# TODO(gaotingquan): Paddle not yet support FP32 evaluation when training with AMPO2
- if self.config["Global"].get(
+ if self.mode == "train" and self.config["Global"].get(
"eval_during_train",
True) and self.amp_level == "O2" and self.amp_eval == False:
msg = "PaddlePaddle only support FP16 evaluation when training with AMP O2 now. "
@@ -248,13 +248,10 @@ class Engine(object):
self.config["AMP"]["use_fp16_test"] = True
self.amp_eval = True
- # TODO(gaotingquan): to compatible with Paddle 2.2, 2.3, develop and so on.
- paddle_version = sum([
- int(x) * 10**(2 - i)
- for i, x in enumerate(paddle.__version__.split(".")[:3])
- ])
+ # TODO(gaotingquan): to compatible with different versions of Paddle
+ paddle_version = paddle.__version__[:3]
# paddle version < 2.3.0 and not develop
- if paddle_version < 230 and paddle_version != 0:
+ if paddle_version not in ["2.3", "0.0"]:
if self.mode == "train":
self.model, self.optimizer = paddle.amp.decorate(
models=self.model,
@@ -273,10 +270,11 @@ class Engine(object):
save_dtype='float32')
# paddle version >= 2.3.0 or develop
else:
- self.model = paddle.amp.decorate(
- models=self.model,
- level=self.amp_level,
- save_dtype='float32')
+ if self.mode == "train" or self.amp_eval:
+ self.model = paddle.amp.decorate(
+ models=self.model,
+ level=self.amp_level,
+ save_dtype='float32')
if self.mode == "train" and len(self.train_loss_func.parameters(
)) > 0:
@@ -316,7 +314,7 @@ class Engine(object):
print_batch_step = self.config['Global']['print_batch_step']
save_interval = self.config["Global"]["save_interval"]
best_metric = {
- "metric": 0.0,
+ "metric": -1.0,
"epoch": 0,
}
# key:
@@ -348,18 +346,18 @@ class Engine(object):
if self.use_dali:
self.train_dataloader.reset()
- metric_msg = ", ".join([
- "{}: {:.5f}".format(key, self.output_info[key].avg)
- for key in self.output_info
- ])
+ metric_msg = ", ".join(
+ [self.output_info[key].avg_info for key in self.output_info])
logger.info("[Train][Epoch {}/{}][Avg]{}".format(
epoch_id, self.config["Global"]["epochs"], metric_msg))
self.output_info.clear()
# eval model and save model if possible
+ start_eval_epoch = self.config["Global"].get("start_eval_epoch",
+ 0) - 1
if self.config["Global"][
"eval_during_train"] and epoch_id % self.config["Global"][
- "eval_interval"] == 0:
+ "eval_interval"] == 0 and epoch_id > start_eval_epoch:
acc = self.eval(epoch_id)
if acc > best_metric["metric"]:
best_metric["metric"] = acc
@@ -371,7 +369,8 @@ class Engine(object):
self.output_dir,
model_name=self.config["Arch"]["name"],
prefix="best_model",
- loss=self.train_loss_func)
+ loss=self.train_loss_func,
+ save_student_model=True)
logger.info("[Eval][Epoch {}][best metric: {}]".format(
epoch_id, best_metric["metric"]))
logger.scaler(
@@ -435,7 +434,17 @@ class Engine(object):
image_file_list.append(image_file)
if len(batch_data) >= batch_size or idx == len(image_list) - 1:
batch_tensor = paddle.to_tensor(batch_data)
- out = self.model(batch_tensor)
+
+ if self.amp and self.amp_eval:
+ with paddle.amp.auto_cast(
+ custom_black_list={
+ "flatten_contiguous_range", "greater_than"
+ },
+ level=self.amp_level):
+ out = self.model(batch_tensor)
+ else:
+ out = self.model(batch_tensor)
+
if isinstance(out, list):
out = out[0]
if isinstance(out, dict) and "logits" in out:
@@ -456,26 +465,31 @@ class Engine(object):
self.config["Global"]["pretrained_model"])
model.eval()
+
+ # for rep nets
+ for layer in self.model.sublayers():
+ if hasattr(layer, "rep"):
+ layer.rep()
+
save_path = os.path.join(self.config["Global"]["save_inference_dir"],
"inference")
- if model.quanter:
- model.quanter.save_quantized_model(
- model.base_model,
- save_path,
- input_spec=[
- paddle.static.InputSpec(
- shape=[None] + self.config["Global"]["image_shape"],
- dtype='float32')
- ])
+
+ model = paddle.jit.to_static(
+ model,
+ input_spec=[
+ paddle.static.InputSpec(
+ shape=[None] + self.config["Global"]["image_shape"],
+ dtype='float32')
+ ])
+ if hasattr(model.base_model,
+ "quanter") and model.base_model.quanter is not None:
+ model.base_model.quanter.save_quantized_model(model,
+ save_path + "_int8")
else:
- model = paddle.jit.to_static(
- model,
- input_spec=[
- paddle.static.InputSpec(
- shape=[None] + self.config["Global"]["image_shape"],
- dtype='float32')
- ])
paddle.jit.save(model, save_path)
+ logger.info(
+ f"Export succeeded! The inference model exported has been saved in \"{self.config['Global']['save_inference_dir']}\"."
+ )
class ExportModel(TheseusLayer):
diff --git a/ppcls/engine/evaluation/classification.py b/ppcls/engine/evaluation/classification.py
index 60595e6a9014b4003ab8008b8144d92d628a2acd..1f9b55fc33ff6b49e9e7f7bd3e9bcebdbf3e0093 100644
--- a/ppcls/engine/evaluation/classification.py
+++ b/ppcls/engine/evaluation/classification.py
@@ -23,6 +23,8 @@ from ppcls.utils import logger
def classification_eval(engine, epoch_id=0):
+ if hasattr(engine.eval_metric_func, "reset"):
+ engine.eval_metric_func.reset()
output_info = dict()
time_info = {
"batch_cost": AverageMeter(
@@ -80,6 +82,7 @@ def classification_eval(engine, epoch_id=0):
# gather Tensor when distributed
if paddle.distributed.get_world_size() > 1:
label_list = []
+
paddle.distributed.all_gather(label_list, batch[1])
labels = paddle.concat(label_list, 0)
@@ -121,18 +124,10 @@ def classification_eval(engine, epoch_id=0):
output_info[key] = AverageMeter(key, '7.5f')
output_info[key].update(loss_dict[key].numpy()[0],
current_samples)
+
# calc metric
if engine.eval_metric_func is not None:
- metric_dict = engine.eval_metric_func(preds, labels)
- for key in metric_dict:
- if metric_key is None:
- metric_key = key
- if key not in output_info:
- output_info[key] = AverageMeter(key, '7.5f')
-
- output_info[key].update(metric_dict[key].numpy()[0],
- current_samples)
-
+ engine.eval_metric_func(preds, labels)
time_info["batch_cost"].update(time.time() - tic)
if iter_id % print_batch_step == 0:
@@ -144,10 +139,14 @@ def classification_eval(engine, epoch_id=0):
ips_msg = "ips: {:.5f} images/sec".format(
batch_size / time_info["batch_cost"].avg)
- metric_msg = ", ".join([
- "{}: {:.5f}".format(key, output_info[key].val)
- for key in output_info
- ])
+ if "ATTRMetric" in engine.config["Metric"]["Eval"][0]:
+ metric_msg = ""
+ else:
+ metric_msg = ", ".join([
+ "{}: {:.5f}".format(key, output_info[key].val)
+ for key in output_info
+ ])
+ metric_msg += ", {}".format(engine.eval_metric_func.avg_info)
logger.info("[Eval][Epoch {}][Iter: {}/{}]{}, {}, {}".format(
epoch_id, iter_id,
len(engine.eval_dataloader), metric_msg, time_msg, ips_msg))
@@ -155,13 +154,29 @@ def classification_eval(engine, epoch_id=0):
tic = time.time()
if engine.use_dali:
engine.eval_dataloader.reset()
- metric_msg = ", ".join([
- "{}: {:.5f}".format(key, output_info[key].avg) for key in output_info
- ])
- logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))
-
- # do not try to save best eval.model
- if engine.eval_metric_func is None:
- return -1
- # return 1st metric in the dict
- return output_info[metric_key].avg
+
+ if "ATTRMetric" in engine.config["Metric"]["Eval"][0]:
+ metric_msg = ", ".join([
+ "evalres: ma: {:.5f} label_f1: {:.5f} label_pos_recall: {:.5f} label_neg_recall: {:.5f} instance_f1: {:.5f} instance_acc: {:.5f} instance_prec: {:.5f} instance_recall: {:.5f}".
+ format(*engine.eval_metric_func.attr_res())
+ ])
+ logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))
+
+ # do not try to save best eval.model
+ if engine.eval_metric_func is None:
+ return -1
+ # return 1st metric in the dict
+ return engine.eval_metric_func.attr_res()[0]
+ else:
+ metric_msg = ", ".join([
+ "{}: {:.5f}".format(key, output_info[key].avg)
+ for key in output_info
+ ])
+ metric_msg += ", {}".format(engine.eval_metric_func.avg_info)
+ logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))
+
+ # do not try to save best eval.model
+ if engine.eval_metric_func is None:
+ return -1
+ # return 1st metric in the dict
+ return engine.eval_metric_func.avg
diff --git a/ppcls/engine/evaluation/retrieval.py b/ppcls/engine/evaluation/retrieval.py
index 05c5d0c35d0f6fdfcd0a8f1dc1a8a121026ede99..f68902285cae9896f76eca30cbabbbacaf5a2b3f 100644
--- a/ppcls/engine/evaluation/retrieval.py
+++ b/ppcls/engine/evaluation/retrieval.py
@@ -16,6 +16,9 @@ from __future__ import division
from __future__ import print_function
import platform
+from typing import Optional
+
+import numpy as np
import paddle
from ppcls.utils import logger
@@ -48,34 +51,67 @@ def retrieval_eval(engine, epoch_id=0):
if engine.eval_loss_func is None:
metric_dict = {metric_key: 0.}
else:
+ reranking_flag = engine.config['Global'].get('re_ranking', False)
+ logger.info(f"re_ranking={reranking_flag}")
metric_dict = dict()
- for block_idx, block_fea in enumerate(fea_blocks):
- similarity_matrix = paddle.matmul(
- block_fea, gallery_feas, transpose_y=True)
- if query_query_id is not None:
- query_id_block = query_id_blocks[block_idx]
- query_id_mask = (query_id_block != gallery_unique_id.t())
-
- image_id_block = image_id_blocks[block_idx]
- image_id_mask = (image_id_block != gallery_img_id.t())
-
- keep_mask = paddle.logical_or(query_id_mask, image_id_mask)
- similarity_matrix = similarity_matrix * keep_mask.astype(
- "float32")
- else:
- keep_mask = None
-
- metric_tmp = engine.eval_metric_func(similarity_matrix,
- image_id_blocks[block_idx],
- gallery_img_id, keep_mask)
+ if reranking_flag:
+ # set the order from small to large
+ for i in range(len(engine.eval_metric_func.metric_func_list)):
+ if hasattr(engine.eval_metric_func.metric_func_list[i], 'descending') \
+ and engine.eval_metric_func.metric_func_list[i].descending is True:
+ engine.eval_metric_func.metric_func_list[
+ i].descending = False
+ logger.warning(
+ f"re_ranking=True,{engine.eval_metric_func.metric_func_list[i].__class__.__name__}.descending has been set to False"
+ )
+
+ # compute distance matrix(The smaller the value, the more similar)
+ distmat = re_ranking(
+ query_feas, gallery_feas, k1=20, k2=6, lambda_value=0.3)
+ # compute keep mask
+ query_id_mask = (query_query_id != gallery_unique_id.t())
+ image_id_mask = (query_img_id != gallery_img_id.t())
+ keep_mask = paddle.logical_or(query_id_mask, image_id_mask)
+
+ # set inf(1e9) distance to those exist in gallery
+ distmat = distmat * keep_mask.astype("float32")
+ inf_mat = (paddle.logical_not(keep_mask).astype("float32")) * 1e20
+ distmat = distmat + inf_mat
+
+ # compute metric
+ metric_tmp = engine.eval_metric_func(distmat, query_img_id,
+ gallery_img_id, keep_mask)
for key in metric_tmp:
- if key not in metric_dict:
- metric_dict[key] = metric_tmp[key] * block_fea.shape[
- 0] / len(query_feas)
+ metric_dict[key] = metric_tmp[key]
+ else:
+ for block_idx, block_fea in enumerate(fea_blocks):
+ similarity_matrix = paddle.matmul(
+ block_fea, gallery_feas, transpose_y=True) # [n,m]
+ if query_query_id is not None:
+ query_id_block = query_id_blocks[block_idx]
+ query_id_mask = (query_id_block != gallery_unique_id.t())
+
+ image_id_block = image_id_blocks[block_idx]
+ image_id_mask = (image_id_block != gallery_img_id.t())
+
+ keep_mask = paddle.logical_or(query_id_mask, image_id_mask)
+ similarity_matrix = similarity_matrix * keep_mask.astype(
+ "float32")
else:
- metric_dict[key] += metric_tmp[key] * block_fea.shape[
- 0] / len(query_feas)
+ keep_mask = None
+
+ metric_tmp = engine.eval_metric_func(
+ similarity_matrix, image_id_blocks[block_idx],
+ gallery_img_id, keep_mask)
+
+ for key in metric_tmp:
+ if key not in metric_dict:
+ metric_dict[key] = metric_tmp[key] * block_fea.shape[
+ 0] / len(query_feas)
+ else:
+ metric_dict[key] += metric_tmp[key] * block_fea.shape[
+ 0] / len(query_feas)
metric_info_list = []
for key in metric_dict:
@@ -185,3 +221,109 @@ def cal_feature(engine, name='gallery'):
logger.info("Build {} done, all feat shape: {}, begin to eval..".format(
name, all_feas.shape))
return all_feas, all_img_id, all_unique_id
+
+
+def re_ranking(query_feas: paddle.Tensor,
+ gallery_feas: paddle.Tensor,
+ k1: int=20,
+ k2: int=6,
+ lambda_value: int=0.5,
+ local_distmat: Optional[np.ndarray]=None,
+ only_local: bool=False) -> paddle.Tensor:
+ """re-ranking, most computed with numpy
+
+ code heavily based on
+ https://github.com/michuanhaohao/reid-strong-baseline/blob/3da7e6f03164a92e696cb6da059b1cd771b0346d/utils/reid_metric.py
+
+ Args:
+ query_feas (paddle.Tensor): query features, [num_query, num_features]
+ gallery_feas (paddle.Tensor): gallery features, [num_gallery, num_features]
+ k1 (int, optional): k1. Defaults to 20.
+ k2 (int, optional): k2. Defaults to 6.
+ lambda_value (int, optional): lambda. Defaults to 0.5.
+ local_distmat (Optional[np.ndarray], optional): local_distmat. Defaults to None.
+ only_local (bool, optional): only_local. Defaults to False.
+
+ Returns:
+ paddle.Tensor: final_dist matrix after re-ranking, [num_query, num_gallery]
+ """
+ query_num = query_feas.shape[0]
+ all_num = query_num + gallery_feas.shape[0]
+ if only_local:
+ original_dist = local_distmat
+ else:
+ feat = paddle.concat([query_feas, gallery_feas])
+ logger.info('using GPU to compute original distance')
+
+ # L2 distance
+ distmat = paddle.pow(feat, 2).sum(axis=1, keepdim=True).expand([all_num, all_num]) + \
+ paddle.pow(feat, 2).sum(axis=1, keepdim=True).expand([all_num, all_num]).t()
+ distmat = distmat.addmm(x=feat, y=feat.t(), alpha=-2.0, beta=1.0)
+
+ original_dist = distmat.cpu().numpy()
+ del feat
+ if local_distmat is not None:
+ original_dist = original_dist + local_distmat
+
+ gallery_num = original_dist.shape[0]
+ original_dist = np.transpose(original_dist / np.max(original_dist, axis=0))
+ V = np.zeros_like(original_dist).astype(np.float16)
+ initial_rank = np.argsort(original_dist).astype(np.int32)
+ logger.info('starting re_ranking')
+ for i in range(all_num):
+ # k-reciprocal neighbors
+ forward_k_neigh_index = initial_rank[i, :k1 + 1]
+ backward_k_neigh_index = initial_rank[forward_k_neigh_index, :k1 + 1]
+ fi = np.where(backward_k_neigh_index == i)[0]
+ k_reciprocal_index = forward_k_neigh_index[fi]
+ k_reciprocal_expansion_index = k_reciprocal_index
+ for j in range(len(k_reciprocal_index)):
+ candidate = k_reciprocal_index[j]
+ candidate_forward_k_neigh_index = initial_rank[candidate, :int(
+ np.around(k1 / 2)) + 1]
+ candidate_backward_k_neigh_index = initial_rank[
+ candidate_forward_k_neigh_index, :int(np.around(k1 / 2)) + 1]
+ fi_candidate = np.where(
+ candidate_backward_k_neigh_index == candidate)[0]
+ candidate_k_reciprocal_index = candidate_forward_k_neigh_index[
+ fi_candidate]
+ if len(
+ np.intersect1d(candidate_k_reciprocal_index,
+ k_reciprocal_index)) > 2 / 3 * len(
+ candidate_k_reciprocal_index):
+ k_reciprocal_expansion_index = np.append(
+ k_reciprocal_expansion_index, candidate_k_reciprocal_index)
+
+ k_reciprocal_expansion_index = np.unique(k_reciprocal_expansion_index)
+ weight = np.exp(-original_dist[i, k_reciprocal_expansion_index])
+ V[i, k_reciprocal_expansion_index] = weight / np.sum(weight)
+ original_dist = original_dist[:query_num, ]
+ if k2 != 1:
+ V_qe = np.zeros_like(V, dtype=np.float16)
+ for i in range(all_num):
+ V_qe[i, :] = np.mean(V[initial_rank[i, :k2], :], axis=0)
+ V = V_qe
+ del V_qe
+ del initial_rank
+ invIndex = []
+ for i in range(gallery_num):
+ invIndex.append(np.where(V[:, i] != 0)[0])
+
+ jaccard_dist = np.zeros_like(original_dist, dtype=np.float16)
+ for i in range(query_num):
+ temp_min = np.zeros(shape=[1, gallery_num], dtype=np.float16)
+ indNonZero = np.where(V[i, :] != 0)[0]
+ indImages = [invIndex[ind] for ind in indNonZero]
+ for j in range(len(indNonZero)):
+ temp_min[0, indImages[j]] = temp_min[0, indImages[j]] + np.minimum(
+ V[i, indNonZero[j]], V[indImages[j], indNonZero[j]])
+ jaccard_dist[i] = 1 - temp_min / (2 - temp_min)
+
+ final_dist = jaccard_dist * (1 - lambda_value
+ ) + original_dist * lambda_value
+ del original_dist
+ del V
+ del jaccard_dist
+ final_dist = final_dist[:query_num, query_num:]
+ final_dist = paddle.to_tensor(final_dist)
+ return final_dist
diff --git a/ppcls/loss/__init__.py b/ppcls/loss/__init__.py
index c3281b0e57e93a4cb19918dde5c535b9b58c6baf..c1f2f95df7afd0a266304ea2ccdf5572d1de9625 100644
--- a/ppcls/loss/__init__.py
+++ b/ppcls/loss/__init__.py
@@ -23,6 +23,7 @@ from .distillationloss import DistillationDMLLoss
from .distillationloss import DistillationDistanceLoss
from .distillationloss import DistillationRKDLoss
from .distillationloss import DistillationKLDivLoss
+from .distillationloss import DistillationDKDLoss
from .multilabelloss import MultiLabelLoss
from .afdloss import AFDLoss
diff --git a/ppcls/loss/distillationloss.py b/ppcls/loss/distillationloss.py
index 21e5ef371d380e2df50cb70b2e4796725bf277e4..c60a540db84edae1374e5370309256f1c98cd40a 100644
--- a/ppcls/loss/distillationloss.py
+++ b/ppcls/loss/distillationloss.py
@@ -21,6 +21,7 @@ from .dmlloss import DMLLoss
from .distanceloss import DistanceLoss
from .rkdloss import RKdAngle, RkdDistance
from .kldivloss import KLDivLoss
+from .dkdloss import DKDLoss
class DistillationCELoss(CELoss):
@@ -204,3 +205,33 @@ class DistillationKLDivLoss(KLDivLoss):
for key in loss:
loss_dict["{}_{}_{}".format(key, pair[0], pair[1])] = loss[key]
return loss_dict
+
+
+class DistillationDKDLoss(DKDLoss):
+ """
+ DistillationDKDLoss
+ """
+
+ def __init__(self,
+ model_name_pairs=[],
+ key=None,
+ temperature=1.0,
+ alpha=1.0,
+ beta=1.0,
+ name="loss_dkd"):
+ super().__init__(temperature=temperature, alpha=alpha, beta=beta)
+ self.key = key
+ self.model_name_pairs = model_name_pairs
+ self.name = name
+
+ def forward(self, predicts, batch):
+ loss_dict = dict()
+ for idx, pair in enumerate(self.model_name_pairs):
+ out1 = predicts[pair[0]]
+ out2 = predicts[pair[1]]
+ if self.key is not None:
+ out1 = out1[self.key]
+ out2 = out2[self.key]
+ loss = super().forward(out1, out2, batch)
+ loss_dict[f"{self.name}_{pair[0]}_{pair[1]}"] = loss
+ return loss_dict
diff --git a/ppcls/loss/dkdloss.py b/ppcls/loss/dkdloss.py
new file mode 100644
index 0000000000000000000000000000000000000000..9ce2c56d9334697d784ebc0371d4d59120790154
--- /dev/null
+++ b/ppcls/loss/dkdloss.py
@@ -0,0 +1,61 @@
+import paddle
+import paddle.nn as nn
+import paddle.nn.functional as F
+
+
+class DKDLoss(nn.Layer):
+ """
+ DKDLoss
+ Reference: https://arxiv.org/abs/2203.08679
+ Code was heavily based on https://github.com/megvii-research/mdistiller
+ """
+
+ def __init__(self, temperature=1.0, alpha=1.0, beta=1.0):
+ super().__init__()
+ self.temperature = temperature
+ self.alpha = alpha
+ self.beta = beta
+
+ def forward(self, logits_student, logits_teacher, target):
+ gt_mask = _get_gt_mask(logits_student, target)
+ other_mask = 1 - gt_mask
+ pred_student = F.softmax(logits_student / self.temperature, axis=1)
+ pred_teacher = F.softmax(logits_teacher / self.temperature, axis=1)
+ pred_student = cat_mask(pred_student, gt_mask, other_mask)
+ pred_teacher = cat_mask(pred_teacher, gt_mask, other_mask)
+ log_pred_student = paddle.log(pred_student)
+ tckd_loss = (F.kl_div(
+ log_pred_student, pred_teacher,
+ reduction='sum') * (self.temperature**2) / target.shape[0])
+ pred_teacher_part2 = F.softmax(
+ logits_teacher / self.temperature - 1000.0 * gt_mask, axis=1)
+ log_pred_student_part2 = F.log_softmax(
+ logits_student / self.temperature - 1000.0 * gt_mask, axis=1)
+ nckd_loss = (F.kl_div(
+ log_pred_student_part2, pred_teacher_part2,
+ reduction='sum') * (self.temperature**2) / target.shape[0])
+ return self.alpha * tckd_loss + self.beta * nckd_loss
+
+
+def _get_gt_mask(logits, target):
+ target = target.reshape([-1]).unsqueeze(1)
+ updates = paddle.ones_like(target)
+ mask = scatter(
+ paddle.zeros_like(logits), target, updates.astype('float32'))
+ return mask
+
+
+def cat_mask(t, mask1, mask2):
+ t1 = (t * mask1).sum(axis=1, keepdim=True)
+ t2 = (t * mask2).sum(axis=1, keepdim=True)
+ rt = paddle.concat([t1, t2], axis=1)
+ return rt
+
+
+def scatter(x, index, updates):
+ i, j = index.shape
+ grid_x, grid_y = paddle.meshgrid(paddle.arange(i), paddle.arange(j))
+ index = paddle.stack([grid_x.flatten(), index.flatten()], axis=1)
+ updates_index = paddle.stack([grid_x.flatten(), grid_y.flatten()], axis=1)
+ updates = paddle.gather_nd(updates, index=updates_index)
+ return paddle.scatter_nd_add(x, index, updates)
diff --git a/ppcls/loss/multilabelloss.py b/ppcls/loss/multilabelloss.py
index d30d5b8d18083385567d0bcdffaa1fd2da4876f5..a88d8265a0c1fe9f21708ae27cabf6a5144f052d 100644
--- a/ppcls/loss/multilabelloss.py
+++ b/ppcls/loss/multilabelloss.py
@@ -3,16 +3,29 @@ import paddle.nn as nn
import paddle.nn.functional as F
+def ratio2weight(targets, ratio):
+ pos_weights = targets * (1. - ratio)
+ neg_weights = (1. - targets) * ratio
+ weights = paddle.exp(neg_weights + pos_weights)
+
+ # for RAP dataloader, targets element may be 2, with or without smooth, some element must great than 1
+ weights = weights - weights * (targets > 1)
+
+ return weights
+
+
class MultiLabelLoss(nn.Layer):
"""
Multi-label loss
"""
- def __init__(self, epsilon=None):
+ def __init__(self, epsilon=None, size_sum=False, weight_ratio=False):
super().__init__()
if epsilon is not None and (epsilon <= 0 or epsilon >= 1):
epsilon = None
self.epsilon = epsilon
+ self.weight_ratio = weight_ratio
+ self.size_sum = size_sum
def _labelsmoothing(self, target, class_num):
if target.ndim == 1 or target.shape[-1] != class_num:
@@ -24,13 +37,21 @@ class MultiLabelLoss(nn.Layer):
return soft_target
def _binary_crossentropy(self, input, target, class_num):
+ if self.weight_ratio:
+ target, label_ratio = target[:, 0, :], target[:, 1, :]
if self.epsilon is not None:
target = self._labelsmoothing(target, class_num)
- cost = F.binary_cross_entropy_with_logits(
- logit=input, label=target)
- else:
- cost = F.binary_cross_entropy_with_logits(
- logit=input, label=target)
+ cost = F.binary_cross_entropy_with_logits(
+ logit=input, label=target, reduction='none')
+
+ if self.weight_ratio:
+ targets_mask = paddle.cast(target > 0.5, 'float32')
+ weight = ratio2weight(targets_mask, paddle.to_tensor(label_ratio))
+ weight = weight * (target > -1)
+ cost = cost * weight
+
+ if self.size_sum:
+ cost = cost.sum(1).mean() if self.size_sum else cost.mean()
return cost
diff --git a/ppcls/metric/__init__.py b/ppcls/metric/__init__.py
index 94721235bca5ab4c27ddba36dd265a01cea003ad..1f49cc2d9c4e8a70287b416447c0d1d98a582113 100644
--- a/ppcls/metric/__init__.py
+++ b/ppcls/metric/__init__.py
@@ -12,17 +12,19 @@
#See the License for the specific language governing permissions and
#limitations under the License.
-from paddle import nn
import copy
from collections import OrderedDict
+from .avg_metrics import AvgMetrics
from .metrics import TopkAcc, mAP, mINP, Recallk, Precisionk
from .metrics import DistillationTopkAcc
from .metrics import GoogLeNetTopkAcc
from .metrics import HammingDistance, AccuracyScore
+from .metrics import ATTRMetric
+from .metrics import TprAtFpr
-class CombinedMetrics(nn.Layer):
+class CombinedMetrics(AvgMetrics):
def __init__(self, config_list):
super().__init__()
self.metric_func_list = []
@@ -38,13 +40,30 @@ class CombinedMetrics(nn.Layer):
eval(metric_name)(**metric_params))
else:
self.metric_func_list.append(eval(metric_name)())
+ self.reset()
- def __call__(self, *args, **kwargs):
+ def forward(self, *args, **kwargs):
metric_dict = OrderedDict()
for idx, metric_func in enumerate(self.metric_func_list):
metric_dict.update(metric_func(*args, **kwargs))
return metric_dict
+ @property
+ def avg_info(self):
+ return ", ".join([metric.avg_info for metric in self.metric_func_list])
+
+ @property
+ def avg(self):
+ return self.metric_func_list[0].avg
+
+ def attr_res(self):
+ return self.metric_func_list[0].attrmeter.res()
+
+ def reset(self):
+ for metric in self.metric_func_list:
+ if hasattr(metric, "reset"):
+ metric.reset()
+
def build_metrics(config):
metrics_list = CombinedMetrics(copy.deepcopy(config))
diff --git a/ppcls/metric/avg_metrics.py b/ppcls/metric/avg_metrics.py
new file mode 100644
index 0000000000000000000000000000000000000000..6f4b62290b3d03879f8910b197b59b5448cb7247
--- /dev/null
+++ b/ppcls/metric/avg_metrics.py
@@ -0,0 +1,20 @@
+from paddle import nn
+
+
+class AvgMetrics(nn.Layer):
+ def __init__(self):
+ super().__init__()
+ self.avg_meters = {}
+
+ def reset(self):
+ self.avg_meters = {}
+
+ @property
+ def avg(self):
+ if self.avg_meters:
+ for metric_key in self.avg_meters:
+ return self.avg_meters[metric_key].avg
+
+ @property
+ def avg_info(self):
+ return ", ".join([self.avg_meters[key].avg_info for key in self.avg_meters])
diff --git a/ppcls/metric/metrics.py b/ppcls/metric/metrics.py
index 03e742082b57439227746d21695379b498e7f1d8..4087cd4d4fd4eca0830d0ce253082dbbbbf16ec0 100644
--- a/ppcls/metric/metrics.py
+++ b/ppcls/metric/metrics.py
@@ -22,14 +22,26 @@ from sklearn.metrics import accuracy_score as accuracy_metric
from sklearn.metrics import multilabel_confusion_matrix
from sklearn.preprocessing import binarize
+from easydict import EasyDict
-class TopkAcc(nn.Layer):
+from ppcls.metric.avg_metrics import AvgMetrics
+from ppcls.utils.misc import AverageMeter, AttrMeter
+
+
+class TopkAcc(AvgMetrics):
def __init__(self, topk=(1, 5)):
super().__init__()
assert isinstance(topk, (int, list, tuple))
if isinstance(topk, int):
topk = [topk]
self.topk = topk
+ self.reset()
+
+ def reset(self):
+ self.avg_meters = {
+ "top{}".format(k): AverageMeter("top{}".format(k))
+ for k in self.topk
+ }
def forward(self, x, label):
if isinstance(x, dict):
@@ -39,19 +51,21 @@ class TopkAcc(nn.Layer):
for k in self.topk:
metric_dict["top{}".format(k)] = paddle.metric.accuracy(
x, label, k=k)
+ self.avg_meters["top{}".format(k)].update(metric_dict["top{}".format(k)], x.shape[0])
return metric_dict
class mAP(nn.Layer):
- def __init__(self):
+ def __init__(self, descending=True):
super().__init__()
+ self.descending = descending
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
keep_mask):
metric_dict = dict()
choosen_indices = paddle.argsort(
- similarities_matrix, axis=1, descending=True)
+ similarities_matrix, axis=1, descending=self.descending)
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
gallery_labels_transpose = paddle.broadcast_to(
gallery_labels_transpose,
@@ -87,15 +101,16 @@ class mAP(nn.Layer):
class mINP(nn.Layer):
- def __init__(self):
+ def __init__(self, descending=True):
super().__init__()
+ self.descending = descending
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
keep_mask):
metric_dict = dict()
choosen_indices = paddle.argsort(
- similarities_matrix, axis=1, descending=True)
+ similarities_matrix, axis=1, descending=self.descending)
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
gallery_labels_transpose = paddle.broadcast_to(
gallery_labels_transpose,
@@ -106,7 +121,7 @@ class mINP(nn.Layer):
choosen_indices)
equal_flag = paddle.equal(choosen_label, query_img_id)
if keep_mask is not None:
- keep_mask = paddle.index_sample(
+ keep_mask = paddle.indechmx_sample(
keep_mask.astype('float32'), choosen_indices)
equal_flag = paddle.logical_and(equal_flag,
keep_mask.astype('bool'))
@@ -129,13 +144,69 @@ class mINP(nn.Layer):
return metric_dict
+class TprAtFpr(nn.Layer):
+ def __init__(self, max_fpr=1 / 1000.):
+ super().__init__()
+ self.gt_pos_score_list = []
+ self.gt_neg_score_list = []
+ self.softmax = nn.Softmax(axis=-1)
+ self.max_fpr = max_fpr
+ self.max_tpr = 0.
+
+ def forward(self, x, label):
+ if isinstance(x, dict):
+ x = x["logits"]
+ x = self.softmax(x)
+ for i, label_i in enumerate(label):
+ if label_i[0] == 0:
+ self.gt_neg_score_list.append(x[i][1].numpy())
+ else:
+ self.gt_pos_score_list.append(x[i][1].numpy())
+ return {}
+
+ def reset(self):
+ self.gt_pos_score_list = []
+ self.gt_neg_score_list = []
+ self.max_tpr = 0.
+
+ @property
+ def avg(self):
+ return self.max_tpr
+
+ @property
+ def avg_info(self):
+ max_tpr = 0.
+ result = ""
+ gt_pos_score_list = np.array(self.gt_pos_score_list)
+ gt_neg_score_list = np.array(self.gt_neg_score_list)
+ for i in range(0, 10000):
+ threshold = i / 10000.
+ if len(gt_pos_score_list) == 0:
+ continue
+ tpr = np.sum(
+ gt_pos_score_list > threshold) / len(gt_pos_score_list)
+ if len(gt_neg_score_list) == 0 and tpr > max_tpr:
+ max_tpr = tpr
+ result = "threshold: {}, fpr: {}, tpr: {:.5f}".format(
+ threshold, fpr, tpr)
+ fpr = np.sum(
+ gt_neg_score_list > threshold) / len(gt_neg_score_list)
+ if fpr <= self.max_fpr and tpr > max_tpr:
+ max_tpr = tpr
+ result = "threshold: {}, fpr: {}, tpr: {:.5f}".format(
+ threshold, fpr, tpr)
+ self.max_tpr = max_tpr
+ return result
+
+
class Recallk(nn.Layer):
- def __init__(self, topk=(1, 5)):
+ def __init__(self, topk=(1, 5), descending=True):
super().__init__()
assert isinstance(topk, (int, list, tuple))
if isinstance(topk, int):
topk = [topk]
self.topk = topk
+ self.descending = descending
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
keep_mask):
@@ -143,7 +214,7 @@ class Recallk(nn.Layer):
#get cmc
choosen_indices = paddle.argsort(
- similarities_matrix, axis=1, descending=True)
+ similarities_matrix, axis=1, descending=self.descending)
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
gallery_labels_transpose = paddle.broadcast_to(
gallery_labels_transpose,
@@ -175,12 +246,13 @@ class Recallk(nn.Layer):
class Precisionk(nn.Layer):
- def __init__(self, topk=(1, 5)):
+ def __init__(self, topk=(1, 5), descending=True):
super().__init__()
assert isinstance(topk, (int, list, tuple))
if isinstance(topk, int):
topk = [topk]
self.topk = topk
+ self.descending = descending
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
keep_mask):
@@ -188,7 +260,7 @@ class Precisionk(nn.Layer):
#get cmc
choosen_indices = paddle.argsort(
- similarities_matrix, axis=1, descending=True)
+ similarities_matrix, axis=1, descending=self.descending)
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
gallery_labels_transpose = paddle.broadcast_to(
gallery_labels_transpose,
@@ -241,20 +313,17 @@ class GoogLeNetTopkAcc(TopkAcc):
return super().forward(x[0], label)
-class MutiLabelMetric(object):
- def __init__(self):
- pass
-
- def _multi_hot_encode(self, logits, threshold=0.5):
- return binarize(logits, threshold=threshold)
+class MultiLabelMetric(AvgMetrics):
+ def __init__(self, bi_threshold=0.5):
+ super().__init__()
+ self.bi_threshold = bi_threshold
- def __call__(self, output):
- output = F.sigmoid(output)
- preds = self._multi_hot_encode(logits=output.numpy(), threshold=0.5)
- return preds
+ def _multi_hot_encode(self, output):
+ logits = F.sigmoid(output).numpy()
+ return binarize(logits, threshold=self.bi_threshold)
-class HammingDistance(MutiLabelMetric):
+class HammingDistance(MultiLabelMetric):
"""
Soft metric based label for multilabel classification
Returns:
@@ -263,16 +332,22 @@ class HammingDistance(MutiLabelMetric):
def __init__(self):
super().__init__()
+ self.reset()
- def __call__(self, output, target):
- preds = super().__call__(output)
+ def reset(self):
+ self.avg_meters = {"HammingDistance": AverageMeter("HammingDistance")}
+
+ def forward(self, output, target):
+ preds = super()._multi_hot_encode(output)
metric_dict = dict()
metric_dict["HammingDistance"] = paddle.to_tensor(
hamming_loss(target, preds))
+ self.avg_meters["HammingDistance"].update(
+ metric_dict["HammingDistance"].numpy()[0], output.shape[0])
return metric_dict
-class AccuracyScore(MutiLabelMetric):
+class AccuracyScore(MultiLabelMetric):
"""
Hard metric for multilabel classification
Args:
@@ -288,9 +363,13 @@ class AccuracyScore(MutiLabelMetric):
assert base in ["sample", "label"
], 'must be one of ["sample", "label"]'
self.base = base
+ self.reset()
+
+ def reset(self):
+ self.avg_meters = {"AccuracyScore": AverageMeter("AccuracyScore")}
- def __call__(self, output, target):
- preds = super().__call__(output)
+ def forward(self, output, target):
+ preds = super()._multi_hot_encode(output)
metric_dict = dict()
if self.base == "sample":
accuracy = accuracy_metric(target, preds)
@@ -303,4 +382,66 @@ class AccuracyScore(MutiLabelMetric):
accuracy = (sum(tps) + sum(tns)) / (
sum(tps) + sum(tns) + sum(fns) + sum(fps))
metric_dict["AccuracyScore"] = paddle.to_tensor(accuracy)
+ self.avg_meters["AccuracyScore"].update(
+ metric_dict["AccuracyScore"].numpy()[0], output.shape[0])
+ return metric_dict
+
+
+def get_attr_metrics(gt_label, preds_probs, threshold):
+ """
+ index: evaluated label index
+ """
+ pred_label = (preds_probs > threshold).astype(int)
+
+ eps = 1e-20
+ result = EasyDict()
+
+ has_fuyi = gt_label == -1
+ pred_label[has_fuyi] = -1
+
+ ###############################
+ # label metrics
+ # TP + FN
+ result.gt_pos = np.sum((gt_label == 1), axis=0).astype(float)
+ # TN + FP
+ result.gt_neg = np.sum((gt_label == 0), axis=0).astype(float)
+ # TP
+ result.true_pos = np.sum((gt_label == 1) * (pred_label == 1),
+ axis=0).astype(float)
+ # TN
+ result.true_neg = np.sum((gt_label == 0) * (pred_label == 0),
+ axis=0).astype(float)
+ # FP
+ result.false_pos = np.sum(((gt_label == 0) * (pred_label == 1)),
+ axis=0).astype(float)
+ # FN
+ result.false_neg = np.sum(((gt_label == 1) * (pred_label == 0)),
+ axis=0).astype(float)
+
+ ################
+ # instance metrics
+ result.gt_pos_ins = np.sum((gt_label == 1), axis=1).astype(float)
+ result.true_pos_ins = np.sum((pred_label == 1), axis=1).astype(float)
+ # true positive
+ result.intersect_pos = np.sum((gt_label == 1) * (pred_label == 1),
+ axis=1).astype(float)
+ # IOU
+ result.union_pos = np.sum(((gt_label == 1) + (pred_label == 1)),
+ axis=1).astype(float)
+
+ return result
+
+
+class ATTRMetric(nn.Layer):
+ def __init__(self, threshold=0.5):
+ super().__init__()
+ self.threshold = threshold
+
+ def reset(self):
+ self.attrmeter = AttrMeter(threshold=0.5)
+
+ def forward(self, output, target):
+ metric_dict = get_attr_metrics(target[:, 0, :].numpy(),
+ output.numpy(), self.threshold)
+ self.attrmeter.update(metric_dict)
return metric_dict
diff --git a/ppcls/static/program.py b/ppcls/static/program.py
index 29107c9c1c1d8f571f0f8cf1cf0b7357ae3100ea..7f2313a58f45bcf05de3c8c92fd205eeabcb4c3e 100644
--- a/ppcls/static/program.py
+++ b/ppcls/static/program.py
@@ -439,8 +439,7 @@ def run(dataloader,
logger.info("END {:s} {:s} {:s}".format(mode, end_str, ips_info))
else:
end_epoch_str = "END epoch:{:<3d}".format(epoch)
- logger.info("{:s} {:s} {:s} {:s}".format(end_epoch_str, mode, end_str,
- ips_info))
+ logger.info("{:s} {:s} {:s}".format(end_epoch_str, mode, end_str))
if use_dali:
dataloader.reset()
diff --git a/ppcls/utils/cls_demo/person_label_list.txt b/ppcls/utils/cls_demo/person_label_list.txt
new file mode 100644
index 0000000000000000000000000000000000000000..8eea2b6dc2433abf303a0ea508021698559b749b
--- /dev/null
+++ b/ppcls/utils/cls_demo/person_label_list.txt
@@ -0,0 +1,2 @@
+0 nobody
+1 someone
diff --git a/ppcls/utils/misc.py b/ppcls/utils/misc.py
index 08ab7b6f77cb85b0a822713ee7d573d561762d14..8015552437998264322661518ba3ce40c7cd7db5 100644
--- a/ppcls/utils/misc.py
+++ b/ppcls/utils/misc.py
@@ -12,6 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
+import paddle
+
__all__ = ['AverageMeter']
@@ -42,6 +44,12 @@ class AverageMeter(object):
self.count += n
self.avg = self.sum / self.count
+ @property
+ def avg_info(self):
+ if isinstance(self.avg, paddle.Tensor):
+ self.avg = self.avg.numpy()[0]
+ return "{}: {:.5f}".format(self.name, self.avg)
+
@property
def total(self):
return '{self.name}_sum: {self.sum:{self.fmt}}{self.postfix}'.format(
@@ -61,3 +69,87 @@ class AverageMeter(object):
def value(self):
return '{self.name}: {self.val:{self.fmt}}{self.postfix}'.format(
self=self)
+
+
+class AttrMeter(object):
+ """
+ Computes and stores the average and current value
+ Code was based on https://github.com/pytorch/examples/blob/master/imagenet/main.py
+ """
+
+ def __init__(self, threshold=0.5):
+ self.threshold = threshold
+ self.reset()
+
+ def reset(self):
+ self.gt_pos = 0
+ self.gt_neg = 0
+ self.true_pos = 0
+ self.true_neg = 0
+ self.false_pos = 0
+ self.false_neg = 0
+
+ self.gt_pos_ins = []
+ self.true_pos_ins = []
+ self.intersect_pos = []
+ self.union_pos = []
+
+ def update(self, metric_dict):
+ self.gt_pos += metric_dict['gt_pos']
+ self.gt_neg += metric_dict['gt_neg']
+ self.true_pos += metric_dict['true_pos']
+ self.true_neg += metric_dict['true_neg']
+ self.false_pos += metric_dict['false_pos']
+ self.false_neg += metric_dict['false_neg']
+
+ self.gt_pos_ins += metric_dict['gt_pos_ins'].tolist()
+ self.true_pos_ins += metric_dict['true_pos_ins'].tolist()
+ self.intersect_pos += metric_dict['intersect_pos'].tolist()
+ self.union_pos += metric_dict['union_pos'].tolist()
+
+ def res(self):
+ import numpy as np
+ eps = 1e-20
+ label_pos_recall = 1.0 * self.true_pos / (
+ self.gt_pos + eps) # true positive
+ label_neg_recall = 1.0 * self.true_neg / (
+ self.gt_neg + eps) # true negative
+ # mean accuracy
+ label_ma = (label_pos_recall + label_neg_recall) / 2
+
+ label_pos_recall = np.mean(label_pos_recall)
+ label_neg_recall = np.mean(label_neg_recall)
+ label_prec = (self.true_pos / (self.true_pos + self.false_pos + eps))
+ label_acc = (self.true_pos /
+ (self.true_pos + self.false_pos + self.false_neg + eps))
+ label_f1 = np.mean(2 * label_prec * label_pos_recall /
+ (label_prec + label_pos_recall + eps))
+
+ ma = (np.mean(label_ma))
+
+ self.gt_pos_ins = np.array(self.gt_pos_ins)
+ self.true_pos_ins = np.array(self.true_pos_ins)
+ self.intersect_pos = np.array(self.intersect_pos)
+ self.union_pos = np.array(self.union_pos)
+ instance_acc = self.intersect_pos / (self.union_pos + eps)
+ instance_prec = self.intersect_pos / (self.true_pos_ins + eps)
+ instance_recall = self.intersect_pos / (self.gt_pos_ins + eps)
+ instance_f1 = 2 * instance_prec * instance_recall / (
+ instance_prec + instance_recall + eps)
+
+ instance_acc = np.mean(instance_acc)
+ instance_prec = np.mean(instance_prec)
+ instance_recall = np.mean(instance_recall)
+ instance_f1 = 2 * instance_prec * instance_recall / (
+ instance_prec + instance_recall + eps)
+
+ instance_acc = np.mean(instance_acc)
+ instance_prec = np.mean(instance_prec)
+ instance_recall = np.mean(instance_recall)
+ instance_f1 = np.mean(instance_f1)
+
+ res = [
+ ma, label_f1, label_pos_recall, label_neg_recall, instance_f1,
+ instance_acc, instance_prec, instance_recall
+ ]
+ return res
diff --git a/ppcls/utils/save_load.py b/ppcls/utils/save_load.py
index 093255379cd35875fbaf06282e391017bf7f14a3..04486cc273bbfe9e3d9863b4c4ded6a8d283eee3 100644
--- a/ppcls/utils/save_load.py
+++ b/ppcls/utils/save_load.py
@@ -42,6 +42,14 @@ def _mkdir_if_not_exist(path):
raise OSError('Failed to mkdir {}'.format(path))
+def _extract_student_weights(all_params, student_prefix="Student."):
+ s_params = {
+ key[len(student_prefix):]: all_params[key]
+ for key in all_params if student_prefix in key
+ }
+ return s_params
+
+
def load_dygraph_pretrain(model, path=None):
if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
raise ValueError("Model pretrain path {}.pdparams does not "
@@ -105,7 +113,8 @@ def init_model(config, net, optimizer=None, loss: paddle.nn.Layer=None):
net.set_state_dict(para_dict)
loss.set_state_dict(para_dict)
for i in range(len(optimizer)):
- optimizer[i].set_state_dict(opti_dict)
+ optimizer[i].set_state_dict(opti_dict[i] if isinstance(
+ opti_dict, list) else opti_dict)
logger.info("Finish load checkpoints from {}".format(checkpoints))
return metric_dict
@@ -116,9 +125,8 @@ def init_model(config, net, optimizer=None, loss: paddle.nn.Layer=None):
load_distillation_model(net, pretrained_model)
else: # common load
load_dygraph_pretrain(net, path=pretrained_model)
- logger.info(
- logger.coloring("Finish load pretrained model from {}".format(
- pretrained_model), "HEADER"))
+ logger.info("Finish load pretrained model from {}".format(
+ pretrained_model))
def save_model(net,
@@ -127,7 +135,8 @@ def save_model(net,
model_path,
model_name="",
prefix='ppcls',
- loss: paddle.nn.Layer=None):
+ loss: paddle.nn.Layer=None,
+ save_student_model=False):
"""
save model to the target path
"""
@@ -138,11 +147,18 @@ def save_model(net,
model_path = os.path.join(model_path, prefix)
params_state_dict = net.state_dict()
- loss_state_dict = loss.state_dict()
- keys_inter = set(params_state_dict.keys()) & set(loss_state_dict.keys())
- assert len(keys_inter) == 0, \
- f"keys in model and loss state_dict must be unique, but got intersection {keys_inter}"
- params_state_dict.update(loss_state_dict)
+ if loss is not None:
+ loss_state_dict = loss.state_dict()
+ keys_inter = set(params_state_dict.keys()) & set(loss_state_dict.keys(
+ ))
+ assert len(keys_inter) == 0, \
+ f"keys in model and loss state_dict must be unique, but got intersection {keys_inter}"
+ params_state_dict.update(loss_state_dict)
+
+ if save_student_model:
+ s_params = _extract_student_weights(params_state_dict)
+ if len(s_params) > 0:
+ paddle.save(s_params, model_path + "_student.pdparams")
paddle.save(params_state_dict, model_path + ".pdparams")
paddle.save([opt.state_dict() for opt in optimizer], model_path + ".pdopt")
diff --git a/requirements.txt b/requirements.txt
index 4fd1f37370da61f6d281771094daf2064e27aa51..4787aa84805e84c26a1030f773fbd89826e1aa56 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -9,3 +9,4 @@ scipy
scikit-learn>=0.21.0
gast==0.3.3
faiss-cpu==1.7.1.post2
+easydict
diff --git a/test_tipc/config/Distillation/resnet34_distill_resnet18_dkd_train_amp_infer_python.txt b/test_tipc/config/Distillation/resnet34_distill_resnet18_dkd_train_amp_infer_python.txt
new file mode 100644
index 0000000000000000000000000000000000000000..ab94039471ba1abaf035600a3351656a3f4e0f25
--- /dev/null
+++ b/test_tipc/config/Distillation/resnet34_distill_resnet18_dkd_train_amp_infer_python.txt
@@ -0,0 +1,54 @@
+===========================train_params===========================
+model_name:DistillationModel
+python:python3.7
+gpu_list:0|0,1
+-o Global.device:gpu
+-o Global.auto_cast:null
+-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=100
+-o Global.output_dir:./output/
+-o DataLoader.Train.sampler.batch_size:8
+-o Global.pretrained_model:null
+train_model_name:latest
+train_infer_img_dir:./dataset/ILSVRC2012/val
+null:null
+##
+trainer:amp_train
+amp_train:tools/train.py -c ppcls/configs/ImageNet/Distillation/resnet34_distill_resnet18_dkd.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o AMP.scale_loss=128 -o AMP.use_dynamic_loss_scaling=True -o AMP.level=O2
+pact_train:null
+fpgm_train:null
+distill_train:null
+null:null
+null:null
+##
+===========================eval_params===========================
+eval:tools/eval.py -c ppcls/configs/ImageNet/Distillation/resnet34_distill_resnet18_dkd.yaml
+null:null
+##
+===========================infer_params==========================
+-o Global.save_inference_dir:./inference
+-o Global.pretrained_model:
+norm_export:tools/export_model.py -c ppcls/configs/ImageNet/Distillation/resnet34_distill_resnet18_dkd.yaml
+quant_export:null
+fpgm_export:null
+distill_export:null
+kl_quant:null
+export2:null
+pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams
+infer_model:../inference/
+infer_export:True
+infer_quant:Fasle
+inference:python/predict_cls.py -c configs/inference_cls.yaml
+-o Global.use_gpu:True|False
+-o Global.enable_mkldnn:True|False
+-o Global.cpu_num_threads:1|6
+-o Global.batch_size:1|16
+-o Global.use_tensorrt:True|False
+-o Global.use_fp16:True|False
+-o Global.inference_model_dir:../inference
+-o Global.infer_imgs:../dataset/ILSVRC2012/val
+-o Global.save_log_path:null
+-o Global.benchmark:True
+null:null
+null:null
+===========================infer_benchmark_params==========================
+random_infer_input:[{float32,[3,224,224]}]
diff --git a/test_tipc/config/Distillation/resnet34_distill_resnet18_dkd_train_infer_python.txt b/test_tipc/config/Distillation/resnet34_distill_resnet18_dkd_train_infer_python.txt
new file mode 100644
index 0000000000000000000000000000000000000000..4b216a9f0c2fa15811617575aefa772aa7dab313
--- /dev/null
+++ b/test_tipc/config/Distillation/resnet34_distill_resnet18_dkd_train_infer_python.txt
@@ -0,0 +1,54 @@
+===========================train_params===========================
+model_name:DistillationModel
+python:python3.7
+gpu_list:0|0,1
+-o Global.device:gpu
+-o Global.auto_cast:null
+-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=100
+-o Global.output_dir:./output/
+-o DataLoader.Train.sampler.batch_size:8
+-o Global.pretrained_model:null
+train_model_name:latest
+train_infer_img_dir:./dataset/ILSVRC2012/val
+null:null
+##
+trainer:norm_train
+norm_train:tools/train.py -c ppcls/configs/ImageNet/Distillation/resnet34_distill_resnet18_dkd.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
+pact_train:null
+fpgm_train:null
+distill_train:null
+null:null
+null:null
+##
+===========================eval_params===========================
+eval:tools/eval.py -c ppcls/configs/ImageNet/Distillation/resnet34_distill_resnet18_dkd.yaml
+null:null
+##
+===========================infer_params==========================
+-o Global.save_inference_dir:./inference
+-o Global.pretrained_model:
+norm_export:tools/export_model.py -c ppcls/configs/ImageNet/Distillation/resnet34_distill_resnet18_dkd.yaml
+quant_export:null
+fpgm_export:null
+distill_export:null
+kl_quant:null
+export2:null
+pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams
+infer_model:../inference/
+infer_export:True
+infer_quant:Fasle
+inference:python/predict_cls.py -c configs/inference_cls.yaml
+-o Global.use_gpu:True|False
+-o Global.enable_mkldnn:True|False
+-o Global.cpu_num_threads:1|6
+-o Global.batch_size:1|16
+-o Global.use_tensorrt:True|False
+-o Global.use_fp16:True|False
+-o Global.inference_model_dir:../inference
+-o Global.infer_imgs:../dataset/ILSVRC2012/val
+-o Global.save_log_path:null
+-o Global.benchmark:True
+null:null
+null:null
+===========================infer_benchmark_params==========================
+random_infer_input:[{float32,[3,224,224]}]
diff --git a/test_tipc/config/PPHGNet/PPHGNet_small_train_infer_python.txt b/test_tipc/config/PPHGNet/PPHGNet_small_train_infer_python.txt
new file mode 100644
index 0000000000000000000000000000000000000000..e787bb0521500ac257a94ed30e892eb4a016a738
--- /dev/null
+++ b/test_tipc/config/PPHGNet/PPHGNet_small_train_infer_python.txt
@@ -0,0 +1,53 @@
+===========================train_params===========================
+model_name:PPHGNet_small
+python:python3.7
+gpu_list:0|0,1
+-o Global.device:gpu
+-o Global.auto_cast:null
+-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
+-o Global.output_dir:./output/
+-o DataLoader.Train.sampler.batch_size:8
+-o Global.pretrained_model:null
+train_model_name:latest
+train_infer_img_dir:./dataset/ILSVRC2012/val
+null:null
+##
+trainer:norm_train
+norm_train:tools/train.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
+pact_train:null
+fpgm_train:null
+distill_train:null
+null:null
+null:null
+##
+===========================eval_params===========================
+eval:tools/eval.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml
+null:null
+##
+===========================infer_params==========================
+-o Global.save_inference_dir:./inference
+-o Global.pretrained_model:
+norm_export:tools/export_model.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml
+quant_export:null
+fpgm_export:null
+distill_export:null
+kl_quant:null
+export2:null
+pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_small_pretrained.pdparams
+infer_model:../inference/
+infer_export:True
+infer_quant:Fasle
+inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.resize_short=236
+-o Global.use_gpu:True|False
+-o Global.enable_mkldnn:True|False
+-o Global.cpu_num_threads:1|6
+-o Global.batch_size:1|16
+-o Global.use_tensorrt:True|False
+-o Global.use_fp16:True|False
+-o Global.inference_model_dir:../inference
+-o Global.infer_imgs:../dataset/ILSVRC2012/val
+-o Global.save_log_path:null
+-o Global.benchmark:True
+null:null
+===========================infer_benchmark_params==========================
+random_infer_input:[{float32,[3,224,224]}]
diff --git a/test_tipc/config/PPHGNet/PPHGNet_tiny_train_infer_python.txt b/test_tipc/config/PPHGNet/PPHGNet_tiny_train_infer_python.txt
new file mode 100644
index 0000000000000000000000000000000000000000..546b9fa1ef5de70730e9e4a6425c23bf729ef017
--- /dev/null
+++ b/test_tipc/config/PPHGNet/PPHGNet_tiny_train_infer_python.txt
@@ -0,0 +1,53 @@
+===========================train_params===========================
+model_name:PPHGNet_tiny
+python:python3.7
+gpu_list:0|0,1
+-o Global.device:gpu
+-o Global.auto_cast:null
+-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
+-o Global.output_dir:./output/
+-o DataLoader.Train.sampler.batch_size:8
+-o Global.pretrained_model:null
+train_model_name:latest
+train_infer_img_dir:./dataset/ILSVRC2012/val
+null:null
+##
+trainer:norm_train
+norm_train:tools/train.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_tiny.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
+pact_train:null
+fpgm_train:null
+distill_train:null
+null:null
+null:null
+##
+===========================eval_params===========================
+eval:tools/eval.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_tiny.yaml
+null:null
+##
+===========================infer_params==========================
+-o Global.save_inference_dir:./inference
+-o Global.pretrained_model:
+norm_export:tools/export_model.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_tiny.yaml
+quant_export:null
+fpgm_export:null
+distill_export:null
+kl_quant:null
+export2:null
+pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_tiny_pretrained.pdparams
+infer_model:../inference/
+infer_export:True
+infer_quant:Fasle
+inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.resize_short=232
+-o Global.use_gpu:True|False
+-o Global.enable_mkldnn:True|False
+-o Global.cpu_num_threads:1|6
+-o Global.batch_size:1|16
+-o Global.use_tensorrt:True|False
+-o Global.use_fp16:True|False
+-o Global.inference_model_dir:../inference
+-o Global.infer_imgs:../dataset/ILSVRC2012/val
+-o Global.save_log_path:null
+-o Global.benchmark:True
+null:null
+===========================infer_benchmark_params==========================
+random_infer_input:[{float32,[3,224,224]}]
diff --git a/test_tipc/config/PPLCNetV2/PPLCNetV2_base_train_infer_python.txt b/test_tipc/config/PPLCNetV2/PPLCNetV2_base_train_infer_python.txt
new file mode 100644
index 0000000000000000000000000000000000000000..1c2806f27885e8fc3d31233b700ac9120fce6888
--- /dev/null
+++ b/test_tipc/config/PPLCNetV2/PPLCNetV2_base_train_infer_python.txt
@@ -0,0 +1,53 @@
+===========================train_params===========================
+model_name:PPLCNetV2_base
+python:python3.7
+gpu_list:0|0,1
+-o Global.device:gpu
+-o Global.auto_cast:null
+-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
+-o Global.output_dir:./output/
+-o DataLoader.Train.sampler.first_bs:8
+-o Global.pretrained_model:null
+train_model_name:latest
+train_infer_img_dir:./dataset/ILSVRC2012/val
+null:null
+##
+trainer:norm_train
+norm_train:tools/train.py -c ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml -o Global.seed=1234 -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
+pact_train:null
+fpgm_train:null
+distill_train:null
+null:null
+null:null
+##
+===========================eval_params===========================
+eval:tools/eval.py -c ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml
+null:null
+##
+===========================infer_params==========================
+-o Global.save_inference_dir:./inference
+-o Global.pretrained_model:
+norm_export:tools/export_model.py -c ppcls/configs/ImageNet/PPLCNetV2/PPLCNetV2_base.yaml
+quant_export:null
+fpgm_export:null
+distill_export:null
+kl_quant:null
+export2:null
+pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNetV2_base_pretrained.pdparams
+infer_model:../inference/
+infer_export:True
+infer_quant:Fasle
+inference:python/predict_cls.py -c configs/inference_cls.yaml
+-o Global.use_gpu:True|False
+-o Global.enable_mkldnn:True|False
+-o Global.cpu_num_threads:1|6
+-o Global.batch_size:1|16
+-o Global.use_tensorrt:True|False
+-o Global.use_fp16:True|False
+-o Global.inference_model_dir:../inference
+-o Global.infer_imgs:../dataset/ILSVRC2012/val
+-o Global.save_log_path:null
+-o Global.benchmark:True
+null:null
+===========================infer_benchmark_params==========================
+random_infer_input:[{float32,[3,224,224]}]
diff --git a/tools/run.sh b/tools/run.sh
new file mode 100644
index 0000000000000000000000000000000000000000..accf628f4bdc87142279e774abfa25634f1e243a
--- /dev/null
+++ b/tools/run.sh
@@ -0,0 +1,302 @@
+#!/usr/bin/env bash
+GPU_IDS="0,1,2,3"
+
+# Basic Config
+CONFIG="ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml"
+EPOCHS=1
+OUTPUT="output_debug4"
+STATUS_LOG="${OUTPUT}/status_result.log"
+RESULT="${OUTPUT}/result.log"
+
+
+# Search Options
+LR_LIST=( 0.0075 0.01 0.0125 )
+RESOLUTION_LIST=( 176 192 224 )
+RA_PROB_LIST=( 0.0 0.1 0.5 )
+RE_PROB_LIST=( 0.0 0.1 0.5 )
+LR_MULT_LIST=( [0.0,0.2,0.4,0.6,0.8,1.0] [0.0,0.4,0.4,0.8,0.8,1.0] )
+TEACHER_LIST=( "ResNet101_vd" "ResNet50_vd" )
+
+
+# Train Mode
+declare -A MODE_MAP
+MODE_MAP=(["search_lr"]=1 ["search_resolution"]=1 ["search_ra_prob"]=1 ["search_re_prob"]=1 ["search_lr_mult_list"]=1 ["search_teacher"]=1 ["train_distillation_model"]=1)
+
+export CUDA_VISIBLE_DEVICES=${GPU_IDS}
+
+
+function status_check(){
+ last_status=$1 # the exit code
+ run_command=$2
+ run_log=$3
+ if [ $last_status -eq 0 ]; then
+ echo -e "\033[33m Run successfully with command - ${run_command}! \033[0m" | tee -a ${run_log}
+ else
+ echo -e "\033[33m Run failed with command - ${run_command}! \033[0m" | tee -a ${run_log}
+ fi
+}
+
+
+function get_max_value(){
+ array=($*)
+ max=${array[0]}
+ index=0
+ for (( i=0; i<${#array[*]-1}; i++ )); do
+ if [[ $(echo "${array[$i]} > $max"|bc) -eq 1 ]]; then
+ max=${array[$i]}
+ index=${i}
+ else
+ continue
+ fi
+ done
+ echo ${max}
+ echo ${index}
+}
+
+function get_best_info(){
+ _parameter=$1
+ params_index=2
+ if [[ ${_parameter} == "TEACHER" ]]; then
+ params_index=3
+ fi
+ parameters_list=$(find ${OUTPUT}/${_parameter}* -name train.log | awk -v params_index=${params_index} -F "/" '{print $params_index}')
+ metric_list=$(find ${OUTPUT}/${_parameter}* -name train.log | xargs cat | grep "best" | grep "Epoch ${EPOCHS}" | awk -F " " '{print substr($NF,0,7)}')
+ best_info=$(get_max_value ${metric_list[*]})
+ best_metric=$(echo $best_info | awk -F " " '{print $1}')
+ best_index=$(echo $best_info | awk -F " " '{print $2}')
+ best_parameter=$(echo $parameters_list | awk -v best=$(($best_index+1)) '{print $best}' | awk -F "_" '{print $2}')
+ echo ${best_metric}
+ echo ${best_parameter}
+}
+
+
+function search_lr(){
+ for lr in ${LR_LIST[*]}; do
+ cmd_train="python3.7 -m paddle.distributed.launch --gpus=${GPU_IDS} tools/train.py \
+ -c ${CONFIG} \
+ -o Global.output_dir=${OUTPUT}/LR_${lr} \
+ -o Optimizer.lr.learning_rate=${lr} \
+ -o Global.epochs=${EPOCHS}"
+ eval ${cmd_train}
+ status_check $? "${cmd_train}" "${STATUS_LOG}"
+ cmd="find ${OUTPUT} -name epoch* | xargs rm -rf"
+ eval ${cmd}
+ done
+}
+
+
+function search_resolution(){
+ _lr=$1
+ for resolution in ${RESOLUTION_LIST[*]}; do
+ cmd_train="python3.7 -m paddle.distributed.launch --gpus=${GPU_IDS} tools/train.py \
+ -c ${CONFIG} \
+ -o Global.output_dir=${OUTPUT}/RESOLUTION_${resolution} \
+ -o Optimizer.lr.learning_rate=${_lr} \
+ -o Global.epochs=${EPOCHS} \
+ -o DataLoader.Train.dataset.transform_ops.1.RandCropImage.size=${resolution}"
+ eval ${cmd_train}
+ status_check $? "${cmd_train}" "${STATUS_LOG}"
+ cmd="find ${OUTPUT} -name epoch* | xargs rm -rf"
+ eval ${cmd}
+ done
+}
+
+
+
+function search_ra_prob(){
+ _lr=$1
+ _resolution=$2
+ for ra_prob in ${RA_PROB_LIST[*]}; do
+ cmd_train="python3.7 -m paddle.distributed.launch --gpus=${GPU_IDS} tools/train.py \
+ -c ${CONFIG} \
+ -o Global.output_dir=${OUTPUT}/RA_${ra_prob} \
+ -o Optimizer.lr.learning_rate=${_lr} \
+ -o Global.epochs=${EPOCHS} \
+ -o DataLoader.Train.dataset.transform_ops.3.TimmAutoAugment.prob=${ra_prob} \
+ -o DataLoader.Train.dataset.transform_ops.1.RandCropImage.size=${_resolution} \
+ -o DataLoader.Train.dataset.transform_ops.3.TimmAutoAugment.img_size=${_resolution}"
+ eval ${cmd_train}
+ status_check $? "${cmd_train}" "${STATUS_LOG}"
+ cmd="find ${OUTPUT} -name epoch* | xargs rm -rf"
+ eval ${cmd}
+ done
+}
+
+
+
+function search_re_prob(){
+ _lr=$1
+ _resolution=$2
+ _ra_prob=$3
+ for re_prob in ${RE_PROB_LIST[*]}; do
+ cmd_train="python3.7 -m paddle.distributed.launch --gpus=${GPU_IDS} tools/train.py \
+ -c ${CONFIG} \
+ -o Global.output_dir=${OUTPUT}/RE_${re_prob} \
+ -o Optimizer.lr.learning_rate=${_lr} \
+ -o Global.epochs=${EPOCHS} \
+ -o DataLoader.Train.dataset.transform_ops.3.TimmAutoAugment.prob=${_ra_prob} \
+ -o DataLoader.Train.dataset.transform_ops.5.RandomErasing.EPSILON=${re_prob} \
+ -o DataLoader.Train.dataset.transform_ops.1.RandCropImage.size=${_resolution} \
+ -o DataLoader.Train.dataset.transform_ops.3.TimmAutoAugment.img_size=${_resolution}"
+ eval ${cmd_train}
+ status_check $? "${cmd_train}" "${STATUS_LOG}"
+ cmd="find ${OUTPUT} -name epoch* | xargs rm -rf"
+ eval ${cmd}
+ done
+}
+
+
+function search_lr_mult_list(){
+ _lr=$1
+ _resolution=$2
+ _ra_prob=$3
+ _re_prob=$4
+
+ for lr_mult in ${LR_MULT_LIST[*]}; do
+ cmd_train="python3.7 -m paddle.distributed.launch --gpus=${GPU_IDS} tools/train.py \
+ -c ${CONFIG} \
+ -o Global.output_dir=${OUTPUT}/LR_MULT_${lr_mult} \
+ -o Optimizer.lr.learning_rate=${_lr} \
+ -o Global.epochs=${EPOCHS} \
+ -o DataLoader.Train.dataset.transform_ops.3.TimmAutoAugment.prob=${_ra_prob} \
+ -o DataLoader.Train.dataset.transform_ops.5.RandomErasing.EPSILON=${_re_prob} \
+ -o DataLoader.Train.dataset.transform_ops.1.RandCropImage.size=${_resolution} \
+ -o DataLoader.Train.dataset.transform_ops.3.TimmAutoAugment.img_size=${_resolution} \
+ -o Arch.lr_mult_list=${lr_mult}"
+ eval ${cmd_train}
+ status_check $? "${cmd_train}" "${STATUS_LOG}"
+ cmd="find ${OUTPUT} -name epoch* | xargs rm -rf"
+ eval ${cmd}
+ done
+
+}
+
+
+function search_teacher(){
+ _lr=$1
+ _resolution=$2
+ _ra_prob=$3
+ _re_prob=$4
+
+ for teacher in ${TEACHER_LIST[*]}; do
+ cmd_train="python3.7 -m paddle.distributed.launch --gpus=${GPU_IDS} tools/train.py \
+ -c ${CONFIG} \
+ -o Global.output_dir=${OUTPUT}/TEACHER_${teacher} \
+ -o Optimizer.lr.learning_rate=${_lr} \
+ -o Global.epochs=${EPOCHS} \
+ -o DataLoader.Train.dataset.transform_ops.3.TimmAutoAugment.prob=${_ra_prob} \
+ -o DataLoader.Train.dataset.transform_ops.5.RandomErasing.EPSILON=${_re_prob} \
+ -o DataLoader.Train.dataset.transform_ops.1.RandCropImage.size=${_resolution} \
+ -o DataLoader.Train.dataset.transform_ops.3.TimmAutoAugment.img_size=${_resolution} \
+ -o Arch.name=${teacher}"
+ eval ${cmd_train}
+ status_check $? "${cmd_train}" "${STATUS_LOG}"
+ cmd="find ${OUTPUT}/* -name epoch* | xargs rm -rf"
+ eval ${cmd}
+ done
+}
+
+
+# train the model for knowledge distillation
+function train_distillation_model(){
+ _lr=$1
+ _resolution=$2
+ _ra_prob=$3
+ _re_prob=$4
+ _lr_mult=$5
+ teacher=$6
+ t_pretrained_model="${OUTPUT}/TEACHER_${teacher}/${teacher}/best_model"
+ config="ppcls/configs/cls_demo/person/Distillation/PPLCNet_x1_0_distillation.yaml"
+ combined_label_list="./dataset/person/train_list_for_distill.txt"
+
+ cmd_train="python3.7 -m paddle.distributed.launch \
+ --gpus=${GPU_IDS} \
+ tools/train.py -c ${config} \
+ -o Global.output_dir=${OUTPUT}/kd_teacher \
+ -o Optimizer.lr.learning_rate=${_lr} \
+ -o Global.epochs=${EPOCHS} \
+ -o DataLoader.Train.dataset.transform_ops.3.TimmAutoAugment.prob=${_ra_prob} \
+ -o DataLoader.Train.dataset.transform_ops.5.RandomErasing.EPSILON=${_re_prob} \
+ -o DataLoader.Train.dataset.transform_ops.1.RandCropImage.size=${_resolution} \
+ -o DataLoader.Train.dataset.transform_ops.3.TimmAutoAugment.img_size=${_resolution} \
+ -o DataLoader.Train.dataset.cls_label_path=${combined_label_list} \
+ -o Arch.models.0.Teacher.name="${teacher}" \
+ -o Arch.models.0.Teacher.pretrained="${t_pretrained_model}" \
+ -o Arch.models.1.Student.lr_mult_list=${_lr_mult}"
+ eval ${cmd_train}
+ status_check $? "${cmd_train}" "${STATUS_LOG}"
+ cmd="find ${OUTPUT} -name epoch* | xargs rm -rf"
+ eval ${cmd}
+}
+
+######## Train PaddleClas ########
+rm -rf ${OUTPUT}
+
+# Train and get best lr
+best_lr=0.01
+if [[ ${MODE_MAP["search_lr"]} -eq 1 ]]; then
+ search_lr
+ best_info=$(get_best_info "LR_[0-9]")
+ best_metric=$(echo $best_info | awk -F " " '{print $1}')
+ best_lr=$(echo $best_info | awk -F " " '{print $2}')
+ echo "The best lr is ${best_lr}, and the best metric is ${best_metric}" >> ${RESULT}
+fi
+
+# Train and get best resolution
+best_resolution=192
+if [[ ${MODE_MAP["search_resolution"]} -eq 1 ]]; then
+ search_resolution "${best_lr}"
+ best_info=$(get_best_info "RESOLUTION")
+ best_metric=$(echo $best_info | awk -F " " '{print $1}')
+ best_resolution=$(echo $best_info | awk -F " " '{print $2}')
+ echo "The best resolution is ${best_resolution}, and the best metric is ${best_metric}" >> ${RESULT}
+fi
+
+# Train and get best ra_prob
+best_ra_prob=0.0
+if [[ ${MODE_MAP["search_ra_prob"]} -eq 1 ]]; then
+ search_ra_prob "${best_lr}" "${best_resolution}"
+ best_info=$(get_best_info "RA")
+ best_metric=$(echo $best_info | awk -F " " '{print $1}')
+ best_ra_prob=$(echo $best_info | awk -F " " '{print $2}')
+ echo "The best ra_prob is ${best_ra_prob}, and the best metric is ${best_metric}" >> ${RESULT}
+fi
+
+# Train and get best re_prob
+best_re_prob=0.1
+if [[ ${MODE_MAP["search_re_prob"]} -eq 1 ]]; then
+ search_re_prob "${best_lr}" "${best_resolution}" "${best_ra_prob}"
+ best_info=$(get_best_info "RE")
+ best_metric=$(echo $best_info | awk -F " " '{print $1}')
+ best_re_prob=$(echo $best_info | awk -F " " '{print $2}')
+ echo "The best re_prob is ${best_re_prob}, and the best metric is ${best_metric}" >> ${RESULT}
+fi
+
+# Train and get best lr_mult_list
+best_lr_mult_list=[1.0,1.0,1.0,1.0,1.0,1.0]
+if [[ ${MODE_MAP["search_lr_mult_list"]} -eq 1 ]]; then
+ search_lr_mult_list "${best_lr}" "${best_resolution}" "${best_ra_prob}" "${best_re_prob}"
+ best_info=$(get_best_info "LR_MULT")
+ best_metric=$(echo $best_info | awk -F " " '{print $1}')
+ best_lr_mult_list=$(echo $best_info | awk -F " " '{print $2}')
+ echo "The best lr_mult_list is ${best_lr_mult_list}, and the best metric is ${best_metric}" >> ${RESULT}
+fi
+
+# train and get best teacher
+best_teacher="ResNet101_vd"
+if [[ ${MODE_MAP["search_teacher"]} -eq 1 ]]; then
+ search_teacher "${best_lr}" "${best_resolution}" "${best_ra_prob}" "${best_re_prob}"
+ best_info=$(get_best_info "TEACHER")
+ best_metric=$(echo $best_info | awk -F " " '{print $1}')
+ best_teacher=$(echo $best_info | awk -F " " '{print $2}')
+ echo "The best teacher is ${best_teacher}, and the best metric is ${best_metric}" >> ${RESULT}
+fi
+
+# train the distillation model
+if [[ ${MODE_MAP["train_distillation_model"]} -eq 1 ]]; then
+ train_distillation_model "${best_lr}" "${best_resolution}" "${best_ra_prob}" "${best_re_prob}" "${best_lr_mult_list}" ${best_teacher}
+ best_info=$(get_best_info "kd_teacher/DistillationModel")
+ best_metric=$(echo $best_info | awk -F " " '{print $1}')
+ echo "the distillation best metric is ${best_metric}, it is global best metric!" >> ${RESULT}
+fi
+
diff --git a/tools/search_strategy.py b/tools/search_strategy.py
new file mode 100644
index 0000000000000000000000000000000000000000..15f4aa71be67bbd0f5ec92d240bbc53896684d91
--- /dev/null
+++ b/tools/search_strategy.py
@@ -0,0 +1,112 @@
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+import os
+import sys
+__dir__ = os.path.dirname(os.path.abspath(__file__))
+sys.path.append(os.path.abspath(os.path.join(__dir__, '../')))
+
+import subprocess
+import numpy as np
+
+from ppcls.utils import config
+
+
+def get_result(log_dir):
+ log_file = "{}/train.log".format(log_dir)
+ with open(log_file, "r") as f:
+ raw = f.read()
+ res = float(raw.split("best metric: ")[-1].split("]")[0])
+ return res
+
+
+def search_train(search_list, base_program, base_output_dir, search_key,
+ config_replace_value, model_name, search_times=1):
+ best_res = 0.
+ best = search_list[0]
+ all_result = {}
+ for search_i in search_list:
+ program = base_program.copy()
+ for v in config_replace_value:
+ program += ["-o", "{}={}".format(v, search_i)]
+ if v == "Arch.name":
+ model_name = search_i
+ res_list = []
+ for j in range(search_times):
+ output_dir = "{}/{}_{}_{}".format(base_output_dir, search_key, search_i, j).replace(".", "_")
+ program += ["-o", "Global.output_dir={}".format(output_dir)]
+ process = subprocess.Popen(program)
+ process.communicate()
+ res = get_result("{}/{}".format(output_dir, model_name))
+ res_list.append(res)
+ all_result[str(search_i)] = res_list
+
+ if np.mean(res_list) > best_res:
+ best = search_i
+ best_res = np.mean(res_list)
+ all_result["best"] = best
+ return all_result
+
+
+def search_strategy():
+ args = config.parse_args()
+ configs = config.get_config(args.config, overrides=args.override, show=False)
+ base_config_file = configs["base_config_file"]
+ distill_config_file = configs["distill_config_file"]
+ model_name = config.get_config(base_config_file)["Arch"]["name"]
+ gpus = configs["gpus"]
+ gpus = ",".join([str(i) for i in gpus])
+ base_program = ["python3.7", "-m", "paddle.distributed.launch", "--gpus={}".format(gpus),
+ "tools/train.py", "-c", base_config_file]
+ base_output_dir = configs["output_dir"]
+ search_times = configs["search_times"]
+ search_dict = configs.get("search_dict")
+ all_results = {}
+ for search_i in search_dict:
+ search_key = search_i["search_key"]
+ search_values = search_i["search_values"]
+ replace_config = search_i["replace_config"]
+ res = search_train(search_values, base_program, base_output_dir,
+ search_key, replace_config, model_name, search_times)
+ all_results[search_key] = res
+ best = res.get("best")
+ for v in replace_config:
+ base_program += ["-o", "{}={}".format(v, best)]
+
+ teacher_configs = configs.get("teacher", None)
+ if teacher_configs is not None:
+ teacher_program = base_program.copy()
+ # remove incompatible keys
+ teacher_rm_keys = teacher_configs["rm_keys"]
+ rm_indices = []
+ for rm_k in teacher_rm_keys:
+ for ind, ki in enumerate(base_program):
+ if rm_k in ki:
+ rm_indices.append(ind)
+ for rm_index in rm_indices[::-1]:
+ teacher_program.pop(rm_index)
+ teacher_program.pop(rm_index-1)
+ replace_config = ["Arch.name"]
+ teacher_list = teacher_configs["search_values"]
+ res = search_train(teacher_list, teacher_program, base_output_dir, "teacher", replace_config, model_name)
+ all_results["teacher"] = res
+ best = res.get("best")
+ t_pretrained = "{}/{}_{}_0/{}/best_model".format(base_output_dir, "teacher", best, best)
+ base_program += ["-o", "Arch.models.0.Teacher.name={}".format(best),
+ "-o", "Arch.models.0.Teacher.pretrained={}".format(t_pretrained)]
+ output_dir = "{}/search_res".format(base_output_dir)
+ base_program += ["-o", "Global.output_dir={}".format(output_dir)]
+ final_replace = configs.get('final_replace')
+ for i in range(len(base_program)):
+ base_program[i] = base_program[i].replace(base_config_file, distill_config_file)
+ for k in final_replace:
+ v = final_replace[k]
+ base_program[i] = base_program[i].replace(k, v)
+
+ process = subprocess.Popen(base_program)
+ process.communicate()
+ print(all_results, base_program)
+
+
+if __name__ == '__main__':
+ search_strategy()