diff --git a/docs/zh_CN/others/feature_visiualization.md b/docs/zh_CN/others/feature_visiualization.md index 65717ea805b7fe028fe3e7e1f378b28a94d8f0e0..faf7e5b7313351b1028a57ae58faf18ef2b2de5b 100644 --- a/docs/zh_CN/others/feature_visiualization.md +++ b/docs/zh_CN/others/feature_visiualization.md @@ -46,18 +46,19 @@ net = ResNet50() 最后执行函数 ```bash -python tools/feature_maps_visualization/fm_vis.py -i the image you want to test \ - -c channel_num -p pretrained model \ - --show whether to show \ - --interpolation interpolation method\ - --save_path where to save \ - --use_gpu whether to use gpu +python tools/feature_maps_visualization/fm_vis.py \ + -i the image you want to test \ + -c channel_num -p pretrained model \ + --show whether to show \ + --interpolation interpolation method\ + --save_path where to save \ + --use_gpu whether to use gpu ``` 参数说明: + `-i`:待预测的图片文件路径,如 `./test.jpeg` + `-c`:特征图维度,如 `5` -+ `-p`:权重文件路径,如 `./ResNet50_pretrained/` ++ `-p`:权重文件路径,如 `./ResNet50_pretrained` + `--interpolation`: 图像插值方式, 默认值 1 + `--save_path`:保存路径,如:`./tools/` + `--use_gpu`:是否使用 GPU 预测,默认值:True diff --git a/docs/zh_CN/others/multi_machine_training.md b/docs/zh_CN/others/multi_machine_training.md deleted file mode 100644 index 6c66a9bc9a738a3b18dfba6121dcd5e47207b609..0000000000000000000000000000000000000000 --- a/docs/zh_CN/others/multi_machine_training.md +++ /dev/null @@ -1,5 +0,0 @@ -# 多机训练 - -分布式训练的高性能,是飞桨的核心优势技术之一,在分类任务上,分布式训练可以达到几乎线性的加速比。 -[Fleet](https://github.com/PaddlePaddle/Fleet) 是用于 PaddlePaddle 分布式训练的高层 API,基于这套接口用户可以很容易切换到分布式训练程序。 -为了可以同时支持单机训练和多机训练,[PaddleClas](https://github.com/PaddlePaddle/PaddleClas) 采用 Fleet API 接口,更多的分布式训练可以参考 [Fleet API设计文档](https://github.com/PaddlePaddle/Fleet/blob/develop/README.md)。 diff --git a/docs/zh_CN/others/train_on_xpu.md b/docs/zh_CN/others/train_on_xpu.md index 09f56f8e35a9d8bedb80ea1f553a22d0d1da99c9..096097c27b3274c5b1e5809763ea8a5e6f68d4e5 100644 --- a/docs/zh_CN/others/train_on_xpu.md +++ b/docs/zh_CN/others/train_on_xpu.md @@ -10,23 +10,53 @@ ### ResNet50 * 命令: -```python3.7 ppcls/static/train.py -c ppcls/configs/quick_start/kunlun/ResNet50_vd_finetune_kunlun.yaml -o use_gpu=False -o use_xpu=True -o is_distributed=False``` +```shell +python3.7 ppcls/static/train.py \ + -c ppcls/configs/quick_start/kunlun/ResNet50_vd_finetune_kunlun.yaml \ + -o use_gpu=False \ + -o use_xpu=True \ + -o is_distributed=False +``` 与cpu/gpu训练的区别是加上-o use_xpu=True, 表示执行在昆仑设备上。 ### MobileNetV3 * 命令: -```python3.7 ppcls/static/train.py -c ppcls/configs/quick_start/MobileNetV3_large_x1_0.yaml -o use_gpu=False -o use_xpu=True -o is_distributed=False``` +```shell +python3.7 ppcls/static/train.py \ + -c ppcls/configs/quick_start/MobileNetV3_large_x1_0.yaml \ + -o use_gpu=False \ + -o use_xpu=True \ + -o is_distributed=False +``` ### HRNet * 命令: -```python3.7 ppcls/static/train.py -c ppcls/configs/quick_start/kunlun/HRNet_W18_C_finetune_kunlun.yaml -o is_distributed=False -o use_xpu=True -o use_gpu=False``` +```shell +python3.7 ppcls/static/train.py \ + -c ppcls/configs/quick_start/kunlun/HRNet_W18_C_finetune_kunlun.yaml \ + -o is_distributed=False \ + -o use_xpu=True \ + -o use_gpu=False +``` ### VGG16/19 * 命令: -```python3.7 ppcls/static/train.py -c ppcls/configs/quick_start/VGG16_finetune_kunlun.yaml -o use_gpu=False -o use_xpu=True -o is_distributed=False``` -```python3.7 ppcls/static/train.py -c ppcls/configs/quick_start/VGG19_finetune_kunlun.yaml -o use_gpu=False -o use_xpu=True -o is_distributed=False``` +```shell +python3.7 ppcls/static/train.py \ + -c ppcls/configs/quick_start/VGG16_finetune_kunlun.yaml \ + -o use_gpu=False \ + -o use_xpu=True \ + -o is_distributed=False +``` +```shell +python3.7 ppcls/static/train.py \ + -c ppcls/configs/quick_start/VGG19_finetune_kunlun.yaml \ + -o use_gpu=False \ + -o use_xpu=True \ + -o is_distributed=False +``` diff --git a/docs/zh_CN/others/train_with_DALI.md b/docs/zh_CN/others/train_with_DALI.md index 03f81f087db06b3207890dd2a0cf5e0b0ed5986a..2ea8a9c10f82a2224df50380fd98a11f3f2ea365 100644 --- a/docs/zh_CN/others/train_with_DALI.md +++ b/docs/zh_CN/others/train_with_DALI.md @@ -25,9 +25,6 @@ PaddleClas支持在静态图训练方式中使用DALI加速,由于DALI仅支 # 设置用于训练的GPU卡号 export CUDA_VISIBLE_DEVICES="0" -# 设置用于神经网络训练的显存大小,可根据具体情况设置,一般可设置为0.8或0.7,剩余显存则预留DALI使用 -export FLAGS_fraction_of_gpu_memory_to_use=0.80 - python ppcls/static/train.py -c ppcls/configs/ImageNet/ResNet/ResNet50.yaml -o use_dali=True ```