Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
d2d89bec
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d2d89bec
编写于
8月 31, 2021
作者:
W
Wei Shengyu
提交者:
GitHub
8月 31, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1184 from lyuwenyu/fix_hub_pretrained_cp_v1_L
Fix hub pretrained url cp
上级
f244feeb
5a9bfd4e
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
56 addition
and
108 deletion
+56
-108
hubconf.py
hubconf.py
+56
-108
未找到文件。
hubconf.py
浏览文件 @
d2d89bec
...
...
@@ -41,10 +41,15 @@ class _SysPathG(object):
self
.
path
)
with
_SysPathG
(
os
.
path
.
join
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
)),
'ppcls'
,
'arch'
)):
import
backbone
with
_SysPathG
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
)),
):
import
ppcls
import
ppcls.arch.backbone
as
backbone
def
ppclas_init
():
if
ppcls
.
utils
.
logger
.
_logger
is
None
:
ppcls
.
utils
.
logger
.
init_logger
()
ppclas_init
()
def
_load_pretrained_parameters
(
model
,
name
):
url
=
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/{}_pretrained.pdparams'
.
format
(
...
...
@@ -63,9 +68,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `AlexNet` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
AlexNet
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'AlexNet'
)
return
model
...
...
@@ -80,9 +84,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `VGG11` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
VGG11
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'VGG11'
)
return
model
...
...
@@ -97,9 +100,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `VGG13` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
VGG13
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'VGG13'
)
return
model
...
...
@@ -114,9 +116,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `VGG16` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
VGG16
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'VGG16'
)
return
model
...
...
@@ -131,9 +132,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `VGG19` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
VGG19
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'VGG19'
)
return
model
...
...
@@ -149,9 +149,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `ResNet18` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
ResNet18
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet18'
)
return
model
...
...
@@ -167,9 +166,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `ResNet34` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
ResNet34
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet34'
)
return
model
...
...
@@ -185,9 +183,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `ResNet50` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
ResNet50
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet50'
)
return
model
...
...
@@ -203,9 +200,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `ResNet101` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
ResNet101
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet101'
)
return
model
...
...
@@ -221,9 +217,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `ResNet152` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
ResNet152
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet152'
)
return
model
...
...
@@ -237,9 +232,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `SqueezeNet1_0` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
SqueezeNet1_0
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'SqueezeNet1_0'
)
return
model
...
...
@@ -253,9 +247,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `SqueezeNet1_1` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
SqueezeNet1_1
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'SqueezeNet1_1'
)
return
model
...
...
@@ -271,9 +264,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `DenseNet121` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
DenseNet121
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet121'
)
return
model
...
...
@@ -289,9 +281,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `DenseNet161` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
DenseNet161
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet161'
)
return
model
...
...
@@ -307,9 +298,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `DenseNet169` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
DenseNet169
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet169'
)
return
model
...
...
@@ -325,9 +315,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `DenseNet201` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
DenseNet201
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet201'
)
return
model
...
...
@@ -343,9 +332,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `DenseNet264` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
DenseNet264
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet264'
)
return
model
...
...
@@ -359,9 +347,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `InceptionV3` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
InceptionV3
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'InceptionV3'
)
return
model
...
...
@@ -375,9 +362,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `InceptionV4` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
InceptionV4
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'InceptionV4'
)
return
model
...
...
@@ -391,9 +377,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `GoogLeNet` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
GoogLeNet
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'GoogLeNet'
)
return
model
...
...
@@ -407,9 +392,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `ShuffleNetV2_x0_25` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
ShuffleNetV2_x0_25
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ShuffleNetV2_x0_25'
)
return
model
...
...
@@ -423,9 +407,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV1` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV1
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1'
)
return
model
...
...
@@ -439,9 +422,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV1_x0_25` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV1_x0_25
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1_x0_25'
)
return
model
...
...
@@ -455,9 +437,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV1_x0_5` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV1_x0_5
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1_x0_5'
)
return
model
...
...
@@ -471,9 +452,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV1_x0_75` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV1_x0_75
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1_x0_75'
)
return
model
...
...
@@ -487,9 +467,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV2_x0_25` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV2_x0_25
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x0_25'
)
return
model
...
...
@@ -503,9 +482,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV2_x0_5` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV2_x0_5
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x0_5'
)
return
model
...
...
@@ -519,9 +497,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV2_x0_75` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV2_x0_75
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x0_75'
)
return
model
...
...
@@ -535,9 +512,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV2_x1_5` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV2_x1_5
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x1_5'
)
return
model
...
...
@@ -551,9 +527,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV2_x2_0` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV2_x2_0
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x2_0'
)
return
model
...
...
@@ -567,10 +542,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV3_large_x0_35` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV3_large_x0_35
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x0_35'
)
return
model
...
...
@@ -584,10 +557,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV3_large_x0_5` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV3_large_x0_5
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x0_5'
)
return
model
...
...
@@ -601,10 +572,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV3_large_x0_75` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV3_large_x0_75
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x0_75'
)
return
model
...
...
@@ -618,10 +587,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV3_large_x1_0` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV3_large_x1_0
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x1_0'
)
return
model
...
...
@@ -635,10 +602,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV3_large_x1_25` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV3_large_x1_25
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x1_25'
)
return
model
...
...
@@ -652,10 +617,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV3_small_x0_35` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV3_small_x0_35
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x0_35'
)
return
model
...
...
@@ -669,10 +632,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV3_small_x0_5` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV3_small_x0_5
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x0_5'
)
return
model
...
...
@@ -686,10 +647,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV3_small_x0_75` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV3_small_x0_75
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x0_75'
)
return
model
...
...
@@ -703,10 +662,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV3_small_x1_0` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV3_small_x1_0
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x1_0'
)
return
model
...
...
@@ -720,10 +677,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `MobileNetV3_small_x1_25` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
MobileNetV3_small_x1_25
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x1_25'
)
return
model
...
...
@@ -737,9 +692,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `ResNeXt101_32x4d` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
ResNeXt101_32x4d
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt101_32x4d'
)
return
model
...
...
@@ -753,9 +707,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `ResNeXt101_64x4d` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
ResNeXt101_64x4d
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt101_64x4d'
)
return
model
...
...
@@ -769,9 +722,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `ResNeXt152_32x4d` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
ResNeXt152_32x4d
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt152_32x4d'
)
return
model
...
...
@@ -785,9 +737,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `ResNeXt152_64x4d` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
ResNeXt152_64x4d
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt152_64x4d'
)
return
model
...
...
@@ -801,9 +752,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `ResNeXt50_32x4d` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
ResNeXt50_32x4d
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt50_32x4d'
)
return
model
...
...
@@ -817,9 +767,8 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `ResNeXt50_64x4d` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
ResNeXt50_64x4d
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt50_64x4d'
)
return
model
...
...
@@ -833,8 +782,7 @@ with _SysPathG(
Returns:
model: nn.Layer. Specific `ResNeXt50_64x4d` model depends on args.
"""
kwargs
.
update
({
'pretrained'
:
pretrained
})
model
=
backbone
.
DarkNet53
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DarkNet53'
)
return
model
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录