diff --git a/docs/zh_CN/inference_deployment/paddle_serving_deploy.md b/docs/zh_CN/inference_deployment/paddle_serving_deploy.md
index 5d91a741d207e08ac36edc2d4328842aac334422..26e1e79a77a4ea1dd8132b8f1cf1d9e4f5b70461 100644
--- a/docs/zh_CN/inference_deployment/paddle_serving_deploy.md
+++ b/docs/zh_CN/inference_deployment/paddle_serving_deploy.md
@@ -121,6 +121,92 @@ python3 pipeline_http_client.py
## 4.图像识别服务部署
+使用PaddleServing做服务化部署时,需要将保存的inference模型转换为serving易于部署的模型。 下面以PP-ShiTu中的超轻量商品识别模型为例,介绍图像识别服务的部署。
+## 4.1 模型转换
+- 下载检测inference模型和商品识别inference模型
+```
+cd deploy
+# 下载并解压商品识别模型
+wget -P models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/general_PPLCNet_x2_5_lite_v1.0_infer.tar
+cd models
+tar -xf general_PPLCNet_x2_5_lite_v1.0_infer.tar
+wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.tar
+tar -xf picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.tar
+```
+- 转换商品识别inference模型为易于server部署的模型格式:
+```
+# 转换商品识别模型
+python3 -m paddle_serving_client.convert --dirname ./general_PPLCNet_x2_5_lite_v1.0_infer/ \
+ --model_filename inference.pdmodel \
+ --params_filename inference.pdiparams \
+ --serving_server ./general_PPLCNet_x2_5_lite_v1.0_serving/ \
+ --serving_client ./general_PPLCNet_x2_5_lite_v1.0_client/
+```
+商品识别推理模型转换完成后,会在当前文件夹多出`general_PPLCNet_x2_5_lite_v1.0_serving/` 和`general_PPLCNet_x2_5_lite_v1.0_serving/`的文件夹。修改serving_server_conf.prototxt中的alias名字: 将`fetch_var`中的`alias_name`改为`features`。
+修改后的serving_server_conf.prototxt内容如下:
+```
+feed_var {
+ name: "x"
+ alias_name: "x"
+ is_lod_tensor: false
+ feed_type: 1
+ shape: 3
+ shape: 224
+ shape: 224
+}
+fetch_var {
+ name: "save_infer_model/scale_0.tmp_1"
+ alias_name: "features"
+ is_lod_tensor: true
+ fetch_type: 1
+ shape: -1
+}
+```
+- 转换通用检测inference模型为易于server部署的模型格式:
+```
+# 转换通用检测模型
+python3 -m paddle_serving_client.convert --dirname ./picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer/ \
+ --model_filename inference.pdmodel \
+ --params_filename inference.pdiparams \
+ --serving_server ./picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving/ \
+ --serving_client ./picodet_PPLCNet_x2_5_mainbody_lite_v1.0_client/
+```
+通用检测inference模型转换完成后,会在当前文件夹多出`picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving/` 和`picodet_PPLCNet_x2_5_mainbody_lite_v1.0_client/`的文件夹。
+
+- 下载并解压已经构建后的商品库index
+```
+cd ../
+wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/drink_dataset_v1.0.tar && tar -xf drink_dataset_v1.0.tar
+```
+
+## 4.2 服务部署和请求
+**注意:** 识别服务涉及到多个模型,采用PipeLine部署方式。Pipeline部署方式当前不支持windows平台。
+- 进入到工作目录
+```shell
+cd ./deploy/paddleserving/recognition
+```
+paddleserving目录包含启动pipeline服务和发送预测请求的代码,包括:
+```
+__init__.py
+config.yml # 启动服务的配置文件
+pipeline_http_client.py # http方式发送pipeline预测请求的脚本
+pipeline_rpc_client.py # rpc方式发送pipeline预测请求的脚本
+recognition_web_service.py # 启动pipeline服务端的脚本
+```
+- 启动服务:
+```
+# 启动服务,运行日志保存在log.txt
+python3 recognition_web_service.py &>log.txt &
+```
+成功启动服务后,log.txt中会打印类似如下日志
+![](../../../deploy/paddleserving/recognition/imgs/start_server_recog.png)
+
+- 发送请求:
+```
+python3 pipeline_http_client.py
+```
+成功运行后,模型预测的结果会打印在cmd窗口中,结果示例为:
+![](../../../deploy/paddleserving/recognition/imgs/results_recog.png)
## 5.FAQ