提交 ccff1f93 编写于 作者: littletomatodonkey's avatar littletomatodonkey

add clas cpp inference

上级 850fba2a
#!/bin/bash
set -e
readonly VERSION="3.8"
version=$(clang-format -version)
if ! [[ $version == *"$VERSION"* ]]; then
echo "clang-format version check failed."
echo "a version contains '$VERSION' is needed, but get '$version'"
echo "you can install the right version, and make an soft-link to '\$PATH' env"
exit -1
fi
clang-format $@
...@@ -3,33 +3,33 @@ ...@@ -3,33 +3,33 @@
hooks: hooks:
- id: yapf - id: yapf
files: \.py$ files: \.py$
- repo: https://github.com/pre-commit/pre-commit-hooks
- repo: https://github.com/pre-commit/mirrors-autopep8 sha: a11d9314b22d8f8c7556443875b731ef05965464
rev: v1.5
hooks: hooks:
- id: autopep8 - id: check-merge-conflict
- id: check-symlinks
- id: detect-private-key
files: (?!.*paddle)^.*$
- id: end-of-file-fixer
files: \.md$
- id: trailing-whitespace
files: \.md$
- repo: https://github.com/Lucas-C/pre-commit-hooks - repo: https://github.com/Lucas-C/pre-commit-hooks
sha: v1.0.1 sha: v1.0.1
hooks: hooks:
- id: forbid-crlf - id: forbid-crlf
files: \.(md|yml)$ files: \.md$
- id: remove-crlf - id: remove-crlf
files: \.(md|yml)$ files: \.md$
- id: forbid-tabs - id: forbid-tabs
files: \.(md|yml)$ files: \.md$
- id: remove-tabs - id: remove-tabs
files: \.(md|yml)$ files: \.md$
- repo: local
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v2.5.0
hooks: hooks:
- id: check-yaml - id: clang-format
- id: check-merge-conflict name: clang-format
- id: detect-private-key description: Format files with ClangFormat
files: (?!.*paddle)^.*$ entry: bash .clang_format.hook -i
- id: end-of-file-fixer language: system
files: \.(md|yml)$ files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|cuh|proto)$
- id: trailing-whitespace
files: \.(md|yml)$
- id: check-case-conflict
project(clas_system CXX C)
option(WITH_MKL "Compile demo with MKL/OpenBlas support, default use MKL." ON)
option(WITH_GPU "Compile demo with GPU/CPU, default use CPU." OFF)
option(WITH_STATIC_LIB "Compile demo with static/shared library, default use static." ON)
option(WITH_TENSORRT "Compile demo with TensorRT." OFF)
SET(PADDLE_LIB "" CACHE PATH "Location of libraries")
SET(OPENCV_DIR "" CACHE PATH "Location of libraries")
SET(CUDA_LIB "" CACHE PATH "Location of libraries")
SET(CUDNN_LIB "" CACHE PATH "Location of libraries")
SET(TENSORRT_DIR "" CACHE PATH "Compile demo with TensorRT")
set(DEMO_NAME "clas_system")
macro(safe_set_static_flag)
foreach(flag_var
CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_DEBUG CMAKE_CXX_FLAGS_RELEASE
CMAKE_CXX_FLAGS_MINSIZEREL CMAKE_CXX_FLAGS_RELWITHDEBINFO)
if(${flag_var} MATCHES "/MD")
string(REGEX REPLACE "/MD" "/MT" ${flag_var} "${${flag_var}}")
endif(${flag_var} MATCHES "/MD")
endforeach(flag_var)
endmacro()
if (WITH_MKL)
ADD_DEFINITIONS(-DUSE_MKL)
endif()
if(NOT DEFINED PADDLE_LIB)
message(FATAL_ERROR "please set PADDLE_LIB with -DPADDLE_LIB=/path/paddle/lib")
endif()
if(NOT DEFINED OPENCV_DIR)
message(FATAL_ERROR "please set OPENCV_DIR with -DOPENCV_DIR=/path/opencv")
endif()
if (WIN32)
include_directories("${PADDLE_LIB}/paddle/fluid/inference")
include_directories("${PADDLE_LIB}/paddle/include")
link_directories("${PADDLE_LIB}/paddle/fluid/inference")
find_package(OpenCV REQUIRED PATHS ${OPENCV_DIR}/build/ NO_DEFAULT_PATH)
else ()
find_package(OpenCV REQUIRED PATHS ${OPENCV_DIR}/share/OpenCV NO_DEFAULT_PATH)
include_directories("${PADDLE_LIB}/paddle/include")
link_directories("${PADDLE_LIB}/paddle/lib")
endif ()
include_directories(${OpenCV_INCLUDE_DIRS})
if (WIN32)
add_definitions("/DGOOGLE_GLOG_DLL_DECL=")
set(CMAKE_C_FLAGS_DEBUG "${CMAKE_C_FLAGS_DEBUG} /bigobj /MTd")
set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} /bigobj /MT")
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} /bigobj /MTd")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /bigobj /MT")
if (WITH_STATIC_LIB)
safe_set_static_flag()
add_definitions(-DSTATIC_LIB)
endif()
else()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g -o3 -std=c++11")
set(CMAKE_STATIC_LIBRARY_PREFIX "")
endif()
message("flags" ${CMAKE_CXX_FLAGS})
if (WITH_GPU)
if (NOT DEFINED CUDA_LIB OR ${CUDA_LIB} STREQUAL "")
message(FATAL_ERROR "please set CUDA_LIB with -DCUDA_LIB=/path/cuda-8.0/lib64")
endif()
if (NOT WIN32)
if (NOT DEFINED CUDNN_LIB)
message(FATAL_ERROR "please set CUDNN_LIB with -DCUDNN_LIB=/path/cudnn_v7.4/cuda/lib64")
endif()
endif(NOT WIN32)
endif()
include_directories("${PADDLE_LIB}/third_party/install/protobuf/include")
include_directories("${PADDLE_LIB}/third_party/install/glog/include")
include_directories("${PADDLE_LIB}/third_party/install/gflags/include")
include_directories("${PADDLE_LIB}/third_party/install/xxhash/include")
include_directories("${PADDLE_LIB}/third_party/install/zlib/include")
include_directories("${PADDLE_LIB}/third_party/boost")
include_directories("${PADDLE_LIB}/third_party/eigen3")
include_directories("${CMAKE_SOURCE_DIR}/")
if (NOT WIN32)
if (WITH_TENSORRT AND WITH_GPU)
include_directories("${TENSORRT_DIR}/include")
link_directories("${TENSORRT_DIR}/lib")
endif()
endif(NOT WIN32)
link_directories("${PADDLE_LIB}/third_party/install/zlib/lib")
link_directories("${PADDLE_LIB}/third_party/install/protobuf/lib")
link_directories("${PADDLE_LIB}/third_party/install/glog/lib")
link_directories("${PADDLE_LIB}/third_party/install/gflags/lib")
link_directories("${PADDLE_LIB}/third_party/install/xxhash/lib")
link_directories("${PADDLE_LIB}/paddle/lib")
if(WITH_MKL)
include_directories("${PADDLE_LIB}/third_party/install/mklml/include")
if (WIN32)
set(MATH_LIB ${PADDLE_LIB}/third_party/install/mklml/lib/mklml.lib
${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5md.lib)
else ()
set(MATH_LIB ${PADDLE_LIB}/third_party/install/mklml/lib/libmklml_intel${CMAKE_SHARED_LIBRARY_SUFFIX}
${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5${CMAKE_SHARED_LIBRARY_SUFFIX})
execute_process(COMMAND cp -r ${PADDLE_LIB}/third_party/install/mklml/lib/libmklml_intel${CMAKE_SHARED_LIBRARY_SUFFIX} /usr/lib)
endif ()
set(MKLDNN_PATH "${PADDLE_LIB}/third_party/install/mkldnn")
if(EXISTS ${MKLDNN_PATH})
include_directories("${MKLDNN_PATH}/include")
if (WIN32)
set(MKLDNN_LIB ${MKLDNN_PATH}/lib/mkldnn.lib)
else ()
set(MKLDNN_LIB ${MKLDNN_PATH}/lib/libmkldnn.so.0)
endif ()
endif()
else()
set(MATH_LIB ${PADDLE_LIB}/third_party/install/openblas/lib/libopenblas${CMAKE_STATIC_LIBRARY_SUFFIX})
endif()
# Note: libpaddle_inference_api.so/a must put before libpaddle_fluid.so/a
if(WITH_STATIC_LIB)
set(DEPS
${PADDLE_LIB}/paddle/lib/libpaddle_fluid${CMAKE_STATIC_LIBRARY_SUFFIX})
else()
set(DEPS
${PADDLE_LIB}/paddle/lib/libpaddle_fluid${CMAKE_SHARED_LIBRARY_SUFFIX})
endif()
if (NOT WIN32)
set(DEPS ${DEPS}
${MATH_LIB} ${MKLDNN_LIB}
glog gflags protobuf z xxhash
)
if(EXISTS "${PADDLE_LIB}/third_party/install/snappystream/lib")
set(DEPS ${DEPS} snappystream)
endif()
if (EXISTS "${PADDLE_LIB}/third_party/install/snappy/lib")
set(DEPS ${DEPS} snappy)
endif()
else()
set(DEPS ${DEPS}
${MATH_LIB} ${MKLDNN_LIB}
glog gflags_static libprotobuf xxhash)
set(DEPS ${DEPS} libcmt shlwapi)
if (EXISTS "${PADDLE_LIB}/third_party/install/snappy/lib")
set(DEPS ${DEPS} snappy)
endif()
if(EXISTS "${PADDLE_LIB}/third_party/install/snappystream/lib")
set(DEPS ${DEPS} snappystream)
endif()
endif(NOT WIN32)
if(WITH_GPU)
if(NOT WIN32)
if (WITH_TENSORRT)
set(DEPS ${DEPS} ${TENSORRT_DIR}/lib/libnvinfer${CMAKE_SHARED_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${TENSORRT_DIR}/lib/libnvinfer_plugin${CMAKE_SHARED_LIBRARY_SUFFIX})
endif()
set(DEPS ${DEPS} ${CUDA_LIB}/libcudart${CMAKE_SHARED_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${CUDNN_LIB}/libcudnn${CMAKE_SHARED_LIBRARY_SUFFIX})
else()
set(DEPS ${DEPS} ${CUDA_LIB}/cudart${CMAKE_STATIC_LIBRARY_SUFFIX} )
set(DEPS ${DEPS} ${CUDA_LIB}/cublas${CMAKE_STATIC_LIBRARY_SUFFIX} )
set(DEPS ${DEPS} ${CUDNN_LIB}/cudnn${CMAKE_STATIC_LIBRARY_SUFFIX})
endif()
endif()
if (NOT WIN32)
set(EXTERNAL_LIB "-ldl -lrt -lgomp -lz -lm -lpthread")
set(DEPS ${DEPS} ${EXTERNAL_LIB})
endif()
set(DEPS ${DEPS} ${OpenCV_LIBS})
AUX_SOURCE_DIRECTORY(./src SRCS)
add_executable(${DEMO_NAME} ${SRCS})
target_link_libraries(${DEMO_NAME} ${DEPS})
if (WIN32 AND WITH_MKL)
add_custom_command(TARGET ${DEMO_NAME} POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mklml/lib/mklml.dll ./mklml.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5md.dll ./libiomp5md.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mkldnn/lib/mkldnn.dll ./mkldnn.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mklml/lib/mklml.dll ./release/mklml.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5md.dll ./release/libiomp5md.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mkldnn/lib/mkldnn.dll ./release/mkldnn.dll
)
endif()
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "paddle_api.h"
#include "paddle_inference_api.h"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
#include <include/preprocess_op.h>
namespace PaddleClas {
class Classifier {
public:
explicit Classifier(const std::string &model_dir, const bool &use_gpu,
const int &gpu_id, const int &gpu_mem,
const int &cpu_math_library_num_threads,
const bool &use_mkldnn, const bool &use_zero_copy_run,
const int &resize_short_size, const int &crop_size) {
this->use_gpu_ = use_gpu;
this->gpu_id_ = gpu_id;
this->gpu_mem_ = gpu_mem;
this->cpu_math_library_num_threads_ = cpu_math_library_num_threads;
this->use_mkldnn_ = use_mkldnn;
this->use_zero_copy_run_ = use_zero_copy_run;
this->resize_short_size_ = resize_short_size;
this->crop_size_ = crop_size;
LoadModel(model_dir);
}
// Load Paddle inference model
void LoadModel(const std::string &model_dir);
// Run predictor
void Run(cv::Mat &img);
private:
std::shared_ptr<PaddlePredictor> predictor_;
bool use_gpu_ = false;
int gpu_id_ = 0;
int gpu_mem_ = 4000;
int cpu_math_library_num_threads_ = 4;
bool use_mkldnn_ = false;
bool use_zero_copy_run_ = false;
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
std::vector<float> scale_ = {1 / 0.229f, 1 / 0.224f, 1 / 0.225f};
bool is_scale_ = true;
int resize_short_size_ = 256;
int crop_size_ = 224;
// pre-process
ResizeImg resize_op_;
Normalize normalize_op_;
Permute permute_op_;
CenterCropImg crop_op_;
};
} // namespace PaddleClas
\ No newline at end of file
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <iomanip>
#include <iostream>
#include <map>
#include <ostream>
#include <string>
#include <vector>
#include "include/utility.h"
namespace PaddleClas {
class Config {
public:
explicit Config(const std::string &config_file) {
config_map_ = LoadConfig(config_file);
this->use_gpu = bool(stoi(config_map_["use_gpu"]));
this->gpu_id = stoi(config_map_["gpu_id"]);
this->gpu_mem = stoi(config_map_["gpu_mem"]);
this->cpu_math_library_num_threads =
stoi(config_map_["cpu_math_library_num_threads"]);
this->use_mkldnn = bool(stoi(config_map_["use_mkldnn"]));
this->use_zero_copy_run = bool(stoi(config_map_["use_zero_copy_run"]));
this->cls_model_dir.assign(config_map_["cls_model_dir"]);
this->resize_short_size = stoi(config_map_["resize_short_size"]);
this->crop_size = stoi(config_map_["crop_size"]);
}
bool use_gpu = false;
int gpu_id = 0;
int gpu_mem = 4000;
int cpu_math_library_num_threads = 1;
bool use_mkldnn = false;
bool use_zero_copy_run = false;
std::string cls_model_dir;
int resize_short_size = 256;
int crop_size = 224;
void PrintConfigInfo();
private:
// Load configuration
std::map<std::string, std::string> LoadConfig(const std::string &config_file);
std::vector<std::string> split(const std::string &str,
const std::string &delim);
std::map<std::string, std::string> config_map_;
};
} // namespace PaddleClas
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
using namespace std;
using namespace paddle;
namespace PaddleClas {
class Normalize {
public:
virtual void Run(cv::Mat *im, const std::vector<float> &mean,
const std::vector<float> &scale, const bool is_scale = true);
};
// RGB -> CHW
class Permute {
public:
virtual void Run(const cv::Mat *im, float *data);
};
class CenterCropImg {
public:
virtual void Run(cv::Mat &im, const int crop_size = 224);
};
class ResizeImg {
public:
virtual void Run(const cv::Mat &img, cv::Mat &resize_img, int max_size_len,
float &ratio_h, float &ratio_w);
};
} // namespace PaddleClas
\ No newline at end of file
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <stdlib.h>
#include <vector>
#include <algorithm>
#include <cstring>
#include <fstream>
#include <numeric>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
namespace PaddleClas {
class Utility {
public:
static std::vector<std::string> ReadDict(const std::string &path);
// template <class ForwardIterator>
// inline static size_t argmax(ForwardIterator first, ForwardIterator last)
// {
// return std::distance(first, std::max_element(first, last));
// }
};
} // namespace PaddleClas
\ No newline at end of file
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <include/cls.h>
namespace PaddleClas {
void Classifier::LoadModel(const std::string &model_dir) {
AnalysisConfig config;
config.SetModel(model_dir + "/model", model_dir + "/params");
if (this->use_gpu_) {
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
} else {
config.DisableGpu();
if (this->use_mkldnn_) {
config.EnableMKLDNN();
// cache 10 different shapes for mkldnn to avoid memory leak
config.SetMkldnnCacheCapacity(10);
}
config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
}
// false for zero copy tensor
// true for commom tensor
config.SwitchUseFeedFetchOps(!this->use_zero_copy_run_);
// true for multiple input
config.SwitchSpecifyInputNames(true);
config.SwitchIrOptim(true);
config.EnableMemoryOptim();
config.DisableGlogInfo();
this->predictor_ = CreatePaddlePredictor(config);
}
void Classifier::Run(cv::Mat &img) {
float ratio_h{};
float ratio_w{};
cv::Mat srcimg;
cv::Mat resize_img;
img.copyTo(srcimg);
this->resize_op_.Run(img, resize_img, this->resize_short_size_, ratio_h,
ratio_w);
this->crop_op_.Run(resize_img, this->crop_size_);
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
this->is_scale_);
std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
this->permute_op_.Run(&resize_img, input.data());
// Inference.
if (this->use_zero_copy_run_) {
auto input_names = this->predictor_->GetInputNames();
auto input_t = this->predictor_->GetInputTensor(input_names[0]);
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
input_t->copy_from_cpu(input.data());
this->predictor_->ZeroCopyRun();
} else {
paddle::PaddleTensor input_t;
input_t.shape = {1, 3, resize_img.rows, resize_img.cols};
input_t.data =
paddle::PaddleBuf(input.data(), input.size() * sizeof(float));
input_t.dtype = PaddleDType::FLOAT32;
std::vector<paddle::PaddleTensor> outputs;
this->predictor_->Run({input_t}, &outputs, 1);
}
std::vector<float> out_data;
auto output_names = this->predictor_->GetOutputNames();
auto output_t = this->predictor_->GetOutputTensor(output_names[0]);
std::vector<int> output_shape = output_t->shape();
int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
std::multiplies<int>());
out_data.resize(out_num);
output_t->copy_to_cpu(out_data.data());
int maxPosition =
max_element(out_data.begin(), out_data.end()) - out_data.begin();
std::cout << "result: " << std::endl;
std::cout << "\tclass: " << maxPosition << std::endl;
std::cout << std::fixed << std::setprecision(10)
<< "\tscore: " << double(out_data[maxPosition]) << std::endl;
}
} // namespace PaddleClas
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <include/config.h>
namespace PaddleClas {
std::vector<std::string> Config::split(const std::string &str,
const std::string &delim) {
std::vector<std::string> res;
if ("" == str)
return res;
char *strs = new char[str.length() + 1];
std::strcpy(strs, str.c_str());
char *d = new char[delim.length() + 1];
std::strcpy(d, delim.c_str());
char *p = std::strtok(strs, d);
while (p) {
std::string s = p;
res.push_back(s);
p = std::strtok(NULL, d);
}
return res;
}
std::map<std::string, std::string>
Config::LoadConfig(const std::string &config_path) {
auto config = Utility::ReadDict(config_path);
std::map<std::string, std::string> dict;
for (int i = 0; i < config.size(); i++) {
// pass for empty line or comment
if (config[i].size() <= 1 || config[i][0] == '#') {
continue;
}
std::vector<std::string> res = split(config[i], " ");
dict[res[0]] = res[1];
}
return dict;
}
void Config::PrintConfigInfo() {
std::cout << "=======Paddle Class inference config======" << std::endl;
for (auto iter = config_map_.begin(); iter != config_map_.end(); iter++) {
std::cout << iter->first << " : " << iter->second << std::endl;
}
std::cout << "=======End of Paddle Class inference config======" << std::endl;
}
} // namespace PaddleClas
\ No newline at end of file
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
#include <include/cls.h>
#include <include/config.h>
using namespace std;
using namespace cv;
using namespace PaddleClas;
int main(int argc, char **argv) {
if (argc < 3) {
std::cerr << "[ERROR] usage: " << argv[0]
<< " configure_filepath image_path\n";
exit(1);
}
Config config(argv[1]);
config.PrintConfigInfo();
std::string img_path(argv[2]);
cv::Mat srcimg = cv::imread(img_path, cv::IMREAD_COLOR);
cv::cvtColor(srcimg, srcimg, cv::COLOR_BGR2RGB);
Classifier classifier(config.cls_model_dir, config.use_gpu, config.gpu_id,
config.gpu_mem, config.cpu_math_library_num_threads,
config.use_mkldnn, config.use_zero_copy_run,
config.resize_short_size, config.crop_size);
auto start = std::chrono::system_clock::now();
classifier.Run(srcimg);
auto end = std::chrono::system_clock::now();
auto duration =
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
std::cout << "Cost "
<< double(duration.count()) *
std::chrono::microseconds::period::num /
std::chrono::microseconds::period::den
<< " s" << std::endl;
return 0;
}
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "paddle_api.h"
#include "paddle_inference_api.h"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
#include <include/preprocess_op.h>
namespace PaddleClas {
void Permute::Run(const cv::Mat *im, float *data) {
int rh = im->rows;
int rw = im->cols;
int rc = im->channels();
for (int i = 0; i < rc; ++i) {
cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw), i);
}
}
void Normalize::Run(cv::Mat *im, const std::vector<float> &mean,
const std::vector<float> &scale, const bool is_scale) {
double e = 1.0;
if (is_scale) {
e /= 255.0;
}
(*im).convertTo(*im, CV_32FC3, e);
for (int h = 0; h < im->rows; h++) {
for (int w = 0; w < im->cols; w++) {
im->at<cv::Vec3f>(h, w)[0] =
(im->at<cv::Vec3f>(h, w)[0] - mean[0]) * scale[0];
im->at<cv::Vec3f>(h, w)[1] =
(im->at<cv::Vec3f>(h, w)[1] - mean[1]) * scale[1];
im->at<cv::Vec3f>(h, w)[2] =
(im->at<cv::Vec3f>(h, w)[2] - mean[2]) * scale[2];
}
}
}
void CenterCropImg::Run(cv::Mat &img, const int crop_size) {
int resize_w = img.cols;
int resize_h = img.rows;
int w_start = int((resize_w - crop_size) / 2);
int h_start = int((resize_h - crop_size) / 2);
cv::Rect rect(w_start, h_start, crop_size, crop_size);
img = img(rect);
}
void ResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img, int max_size_len,
float &ratio_h, float &ratio_w) {
int w = img.cols;
int h = img.rows;
float ratio = 1.f;
if (h < w) {
ratio = float(max_size_len) / float(h);
} else {
ratio = float(max_size_len) / float(w);
}
int resize_h = int(float(h) * ratio);
int resize_w = int(float(w) * ratio);
cv::resize(img, resize_img, cv::Size(resize_w, resize_h));
ratio_h = float(resize_h) / float(h);
ratio_w = float(resize_w) / float(w);
}
} // namespace PaddleClas
\ No newline at end of file
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <iostream>
#include <ostream>
#include <vector>
#include <include/utility.h>
namespace PaddleClas {
std::vector<std::string> Utility::ReadDict(const std::string &path) {
std::ifstream in(path);
std::string line;
std::vector<std::string> m_vec;
if (in) {
while (getline(in, line)) {
m_vec.push_back(line);
}
} else {
std::cout << "no such label file: " << path << ", exit the program..."
<< std::endl;
exit(1);
}
return m_vec;
}
} // namespace PaddleClas
\ No newline at end of file
OPENCV_DIR=/PaddleClas/PaddleOCR/opencv-3.4.7/opencv3/
LIB_DIR=/PaddleClas/PaddleOCR/fluid_inference/
CUDA_LIB_DIR=/usr/local/cuda/lib64
CUDNN_LIB_DIR=/usr/lib/x86_64-linux-gnu/
BUILD_DIR=build
rm -rf ${BUILD_DIR}
mkdir ${BUILD_DIR}
cd ${BUILD_DIR}
cmake .. \
-DPADDLE_LIB=${LIB_DIR} \
-DWITH_MKL=ON \
-DWITH_GPU=OFF \
-DWITH_STATIC_LIB=OFF \
-DUSE_TENSORRT=OFF \
-DOPENCV_DIR=${OPENCV_DIR} \
-DCUDNN_LIB=${CUDNN_LIB_DIR} \
-DCUDA_LIB=${CUDA_LIB_DIR} \
make -j
# model load config
use_gpu 0
gpu_id 0
gpu_mem 4000
cpu_math_library_num_threads 10
use_mkldnn 1
use_zero_copy_run 1
# cls config
cls_model_dir ./inference/
resize_short_size 256
crop_size 224
./build/clas_system ./tools/config.txt ./ILSVRC2012_val_00000001.JPEG
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册