提交 c5cf3c15 编写于 作者: G gaotingquan

fix export_model to support dygraph

上级 6589b2a8
...@@ -15,7 +15,10 @@ ...@@ -15,7 +15,10 @@
import argparse import argparse
from ppcls.modeling import architectures from ppcls.modeling import architectures
import paddle.fluid as fluid from ppcls.utils.save_load import load_dygraph_pretrain
import paddle
import paddle.nn.functional as F
from paddle.jit import to_static
def parse_args(): def parse_args():
...@@ -24,54 +27,38 @@ def parse_args(): ...@@ -24,54 +27,38 @@ def parse_args():
parser.add_argument("-p", "--pretrained_model", type=str) parser.add_argument("-p", "--pretrained_model", type=str)
parser.add_argument("-o", "--output_path", type=str) parser.add_argument("-o", "--output_path", type=str)
parser.add_argument("--class_dim", type=int, default=1000) parser.add_argument("--class_dim", type=int, default=1000)
parser.add_argument("--img_size", type=int, default=224) # parser.add_argument("--img_size", type=int, default=224)
return parser.parse_args() return parser.parse_args()
def create_input(img_size=224): class Net(paddle.nn.Layer):
image = fluid.data( def __init__(self, net, to_static, class_dim):
name='image', shape=[None, 3, img_size, img_size], dtype='float32') super(Net, self).__init__()
return image self.pre_net = net(class_dim=class_dim)
self.to_static = to_static
# 请根据实际需求修改shape
def create_model(args, model, input, class_dim=1000): @to_static(input_spec=[
if args.model == "GoogLeNet": paddle.static.InputSpec(
out, _, _ = model.net(input=input, class_dim=class_dim) shape=[None, 3, 224, 224], dtype='float32')
else: ])
out = model.net(input=input, class_dim=class_dim) def forward(self, inputs):
out = fluid.layers.softmax(out) x = self.pre_net(inputs)
return out x = F.softmax(x)
return x
def main(): def main():
args = parse_args() args = parse_args()
model = architectures.__dict__[args.model]() paddle.disable_static()
net = architectures.__dict__[args.model]
place = fluid.CPUPlace()
exe = fluid.Executor(place)
startup_prog = fluid.Program()
infer_prog = fluid.Program()
with fluid.program_guard(infer_prog, startup_prog):
with fluid.unique_name.guard():
image = create_input(args.img_size)
out = create_model(args, model, image, class_dim=args.class_dim)
infer_prog = infer_prog.clone(for_test=True)
fluid.load(
program=infer_prog, model_path=args.pretrained_model, executor=exe)
fluid.io.save_inference_model( model = Net(net, to_static, args.class_dim)
dirname=args.output_path, para_state_dict = paddle.io.load_program_state(args.pretrained_model)
feeded_var_names=[image.name], load_dygraph_pretrain(model, args.pretrained_model, True)
main_program=infer_prog, paddle.jit.save(model, args.output_path)
target_vars=out,
executor=exe,
model_filename='model',
params_filename='params')
if __name__ == "__main__": if __name__ == "__main__":
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册