Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
c329ebe8
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c329ebe8
编写于
9月 10, 2020
作者:
littletomatodonkey
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix readme
上级
a7a45dd1
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
62 addition
and
57 deletion
+62
-57
README.md
README.md
+62
-57
未找到文件。
README.md
浏览文件 @
c329ebe8
...
...
@@ -37,14 +37,14 @@
-
[
快速安装
](
./docs/zh_CN/tutorials/install.md
)
-
[
30分钟玩转PaddleClas
](
./docs/zh_CN/tutorials/quick_start.md
)
-
[
模型库介绍和预训练模型
](
./docs/zh_CN/models/models_intro.md
)
-
[
模型库概览图
](
)
-
[
ResNet及其Vd系列
](
docs/zh_CN/models/ResNet_and_vd.md
)
-
[
SEResNeXt与Res2Net系列
](
docs/zh_CN/models/SEResNext_and_Res2Net.md
)
-
[
Inception系列
](
docs/zh_CN/models/Inception.md
)
-
[
DPN与DenseNet系列
](
docs/zh_CN/models/DPN_DenseNet.md
)
-
[
EfficientNet与ResNeXt101_wsl系列
](
docs/zh_CN/models/EfficientNet_and_ResNeXt101_wsl.md
)
-
[
ResNeSt与RegNet系列
](
docs/zh_CN/models/ResNeSt_RegNet.md
)
-
[
移动端系列
](
docs/zh_CN/models/Mobile.md
)
-
[
模型库概览图
](
#模型库概览图
)
-
[
ResNet及其Vd系列
](
#ResNet及其Vd系列
)
-
[
移动端系列
](
#移动端系列
)
-
[
SEResNeXt与Res2Net系列
](
#SEResNeXt与Res2Net系列
)
-
[
Inception系列
](
#Inception系列
)
-
[
DPN与DenseNet系列
](
#DPN与DenseNet系列
)
-
[
EfficientNet与ResNeXt101_wsl系列
](
#EfficientNet与ResNeXt101_wsl系列
)
-
[
ResNeSt与RegNet系列
](
#ResNeSt与RegNet系列
)
-
模型训练/评估
-
[
数据准备
](
./docs/zh_CN/tutorials/data.md
)
-
[
模型训练与微调
](
./docs/zh_CN/tutorials/getting_started.md
)
...
...
@@ -73,6 +73,7 @@
## 模型库
<a
name=
"模型库概览图"
></a>
### 模型库概览图
基于ImageNet1k分类数据集,PaddleClas支持24种系列分类网络结构以及对应的122个图像分类预训练模型,训练技巧、每个系列网络结构的简单介绍和性能评估将在相应章节展现,下面所有的速度指标评估环境如下:
...
...
@@ -91,6 +92,7 @@
![](
./docs/images/models/mobile_arm_top1.png
)
<a
name=
"ResNet及其Vd系列"
></a>
### ResNet及其Vd系列
ResNet及其Vd系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
ResNet及其Vd系列模型文档
](
./docs/zh_CN/models/ResNet_and_vd.md
)
。
...
...
@@ -115,7 +117,54 @@ ResNet及其Vd系列模型的精度、速度指标如下表所示,更多关于
| ResNet101_vd_
<br>
ssld | 0.8373 | 0.9669 | 6.11704 | 13.76222 | 16.1 | 44.57 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_ssld_pretrained.tar
)
|
<a
name=
"移动端系列"
></a>
### 移动端系列
移动端系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
移动端系列模型文档
](
./docs/zh_CN/models/Mobile.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | SD855 time(ms)
<br>
bs=1 | Flops(G) | Params(M) | 模型大小(M) | 下载地址 |
|----------------------------------|-----------|-----------|------------------------|----------|-----------|---------|-----------------------------------------------------------------------------------------------------------|
| MobileNetV1_
<br>
x0_25 | 0.5143 | 0.7546 | 3.21985 | 0.07 | 0.46 | 1.9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_25_pretrained.tar
)
|
| MobileNetV1_
<br>
x0_5 | 0.6352 | 0.8473 | 9.579599 | 0.28 | 1.31 | 5.2 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_5_pretrained.tar
)
|
| MobileNetV1_
<br>
x0_75 | 0.6881 | 0.8823 | 19.436399 | 0.63 | 2.55 | 10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_75_pretrained.tar
)
|
| MobileNetV1 | 0.7099 | 0.8968 | 32.523048 | 1.11 | 4.19 | 16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar
)
|
| MobileNetV1_
<br>
ssld | 0.7789 | 0.9394 | 32.523048 | 1.11 | 4.19 | 16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_ssld_pretrained.tar
)
|
| MobileNetV2_
<br>
x0_25 | 0.5321 | 0.7652 | 3.79925 | 0.05 | 1.5 | 6.1 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar
)
|
| MobileNetV2_
<br>
x0_5 | 0.6503 | 0.8572 | 8.7021 | 0.17 | 1.93 | 7.8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar
)
|
| MobileNetV2_
<br>
x0_75 | 0.6983 | 0.8901 | 15.531351 | 0.35 | 2.58 | 10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_75_pretrained.tar
)
|
| MobileNetV2 | 0.7215 | 0.9065 | 23.317699 | 0.6 | 3.44 | 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar
)
|
| MobileNetV2_
<br>
x1_5 | 0.7412 | 0.9167 | 45.623848 | 1.32 | 6.76 | 26 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar
)
|
| MobileNetV2_
<br>
x2_0 | 0.7523 | 0.9258 | 74.291649 | 2.32 | 11.13 | 43 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar
)
|
| MobileNetV2_
<br>
ssld | 0.7674 | 0.9339 | 23.317699 | 0.6 | 3.44 | 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_ssld_pretrained.tar
)
|
| MobileNetV3_
<br>
large_x1_25 | 0.7641 | 0.9295 | 28.217701 | 0.714 | 7.44 | 29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_25_pretrained.tar
)
|
| MobileNetV3_
<br>
large_x1_0 | 0.7532 | 0.9231 | 19.30835 | 0.45 | 5.47 | 21 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_pretrained.tar
)
|
| MobileNetV3_
<br>
large_x0_75 | 0.7314 | 0.9108 | 13.5646 | 0.296 | 3.91 | 16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_75_pretrained.tar
)
|
| MobileNetV3_
<br>
large_x0_5 | 0.6924 | 0.8852 | 7.49315 | 0.138 | 2.67 | 11 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_5_pretrained.tar
)
|
| MobileNetV3_
<br>
large_x0_35 | 0.6432 | 0.8546 | 5.13695 | 0.077 | 2.1 | 8.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_35_pretrained.tar
)
|
| MobileNetV3_
<br>
small_x1_25 | 0.7067 | 0.8951 | 9.2745 | 0.195 | 3.62 | 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_25_pretrained.tar
)
|
| MobileNetV3_
<br>
small_x1_0 | 0.6824 | 0.8806 | 6.5463 | 0.123 | 2.94 | 12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_pretrained.tar
)
|
| MobileNetV3_
<br>
small_x0_75 | 0.6602 | 0.8633 | 5.28435 | 0.088 | 2.37 | 9.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_75_pretrained.tar
)
|
| MobileNetV3_
<br>
small_x0_5 | 0.5921 | 0.8152 | 3.35165 | 0.043 | 1.9 | 7.8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_5_pretrained.tar
)
|
| MobileNetV3_
<br>
small_x0_35 | 0.5303 | 0.7637 | 2.6352 | 0.026 | 1.66 | 6.9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_35_pretrained.tar
)
|
| MobileNetV3_
<br>
small_x0_35_ssld | 0.5555 | 0.7771 | 2.6352 | 0.026 | 1.66 | 6.9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_35_ssld_pretrained.tar
)
|
| MobileNetV3_
<br>
large_x1_0_ssld | 0.7896 | 0.9448 | 19.30835 | 0.45 | 5.47 | 21 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar
)
|
| MobileNetV3_large_
<br>
x1_0_ssld_int8 | 0.7605 | - | 14.395 | - | - | 10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_int8_pretrained.tar
)
|
| MobileNetV3_small_
<br>
x1_0_ssld | 0.7129 | 0.9010 | 6.5463 | 0.123 | 2.94 | 12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_ssld_pretrained.tar
)
|
| ShuffleNetV2 | 0.6880 | 0.8845 | 10.941 | 0.28 | 2.26 | 9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar
)
|
| ShuffleNetV2_
<br>
x0_25 | 0.4990 | 0.7379 | 2.329 | 0.03 | 0.6 | 2.7 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_25_pretrained.tar
)
|
| ShuffleNetV2_
<br>
x0_33 | 0.5373 | 0.7705 | 2.64335 | 0.04 | 0.64 | 2.8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_33_pretrained.tar
)
|
| ShuffleNetV2_
<br>
x0_5 | 0.6032 | 0.8226 | 4.2613 | 0.08 | 1.36 | 5.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_5_pretrained.tar
)
|
| ShuffleNetV2_
<br>
x1_5 | 0.7163 | 0.9015 | 19.3522 | 0.58 | 3.47 | 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x1_5_pretrained.tar
)
|
| ShuffleNetV2_
<br>
x2_0 | 0.7315 | 0.9120 | 34.770149 | 1.12 | 7.32 | 28 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x2_0_pretrained.tar
)
|
| ShuffleNetV2_
<br>
swish | 0.7003 | 0.8917 | 16.023151 | 0.29 | 2.26 | 9.1 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_swish_pretrained.tar
)
|
| DARTS_GS_4M | 0.7523 | 0.9215 | 47.204948 | 1.04 | 4.77 | 21 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/DARTS_GS_4M_pretrained.tar
)
|
| DARTS_GS_6M | 0.7603 | 0.9279 | 53.720802 | 1.22 | 5.69 | 24 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/DARTS_GS_6M_pretrained.tar
)
|
| GhostNet_
<br>
x0_5 | 0.6688 | 0.8695 | 5.7143 | 0.082 | 2.6 | 10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/GhostNet_x0_5_pretrained.pdparams
)
|
| GhostNet_
<br>
x1_0 | 0.7402 | 0.9165 | 13.5587 | 0.294 | 5.2 | 20 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/GhostNet_x1_0_pretrained.pdparams
)
|
| GhostNet_
<br>
x1_3 | 0.7579 | 0.9254 | 19.9825 | 0.44 | 7.3 | 29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/GhostNet_x1_3_pretrained.pdparams
)
|
<a
name=
"SEResNeXt与Res2Net系列"
></a>
### SEResNeXt与Res2Net系列
SEResNeXt与Res2Net系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
SEResNeXt与Res2Net系列模型文档
](
./docs/zh_CN/models/SEResNext_and_Res2Net.md
)
。
...
...
@@ -150,6 +199,7 @@ SEResNeXt与Res2Net系列模型的精度、速度指标如下表所示,更多
| SENet154_vd | 0.8140 | 0.9548 | 53.79794 | 66.31684 | 45.83 | 114.29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/SENet154_vd_pretrained.tar
)
|
<a
name=
"DPN与DenseNet系列"
></a>
### DPN与DenseNet系列
DPN与DenseNet系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
DPN与DenseNet系列模型文档
](
./docs/zh_CN/models/DPN_DenseNet.md
)
。
...
...
@@ -170,8 +220,7 @@ DPN与DenseNet系列模型的精度、速度指标如下表所示,更多关于
<a
name=
"HRNet系列"
></a>
### HRNet系列
HRNet系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
HRNet系列模型文档
](
./docs/zh_CN/models/HRNet.md
)
。
...
...
@@ -189,7 +238,7 @@ HRNet系列模型的精度、速度指标如下表所示,更多关于该系列
| HRNet_W64_C | 0.7930 | 0.9461 | 17.57527 | 47.9533 | 57.83 | 128.06 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W64_C_pretrained.tar
)
|
<a
name=
"Inception系列"
></a>
### Inception系列
Inception系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
Inception系列模型文档
](
./docs/zh_CN/models/Inception.md
)
。
...
...
@@ -205,6 +254,7 @@ Inception系列模型的精度、速度指标如下表所示,更多关于该
| InceptionV4 | 0.8077 | 0.9526 | 12.99342 | 25.23416 | 24.57 | 42.68 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar
)
|
<a
name=
"EfficientNet与ResNeXt101_wsl系列"
></a>
### EfficientNet与ResNeXt101_wsl系列
EfficientNet与ResNeXt101_wsl系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
EfficientNet与ResNeXt101_wsl系列模型文档
](
./docs/zh_CN/models/Inception.md
)
。
...
...
@@ -228,6 +278,7 @@ EfficientNet与ResNeXt101_wsl系列模型的精度、速度指标如下表所示
| EfficientNetB0_
<br>
small | 0.7580 | 0.9258 | 2.3076 | 4.71886 | 0.72 | 4.65 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB0_small_pretrained.tar
)
|
<a
name=
"ResNeSt与RegNet系列"
></a>
### ResNeSt与RegNet系列
ResNeSt与RegNet系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
ResNeSt与RegNet系列模型文档
](
./docs/zh_CN/models/ResNeSt_RegNet.md
)
。
...
...
@@ -240,52 +291,6 @@ ResNeSt与RegNet系列模型的精度、速度指标如下表所示,更多关
| RegNetX_4GF | 0.785 | 0.9416 | 6.46478 | 11.19862 | 8 | 22.1 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/RegNetX_4GF_pretrained.pdparams
)
|
### 移动端系列
移动端系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
移动端系列模型文档
](
./docs/zh_CN/models/Mobile.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | SD855 time(ms)
<br>
bs=1 | Flops(G) | Params(M) | 模型大小(M) | 下载地址 |
|----------------------------------|-----------|-----------|------------------------|----------|-----------|---------|-----------------------------------------------------------------------------------------------------------|
| MobileNetV1_
<br>
x0_25 | 0.5143 | 0.7546 | 3.21985 | 0.07 | 0.46 | 1.9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_25_pretrained.tar
)
|
| MobileNetV1_
<br>
x0_5 | 0.6352 | 0.8473 | 9.579599 | 0.28 | 1.31 | 5.2 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_5_pretrained.tar
)
|
| MobileNetV1_
<br>
x0_75 | 0.6881 | 0.8823 | 19.436399 | 0.63 | 2.55 | 10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_75_pretrained.tar
)
|
| MobileNetV1 | 0.7099 | 0.8968 | 32.523048 | 1.11 | 4.19 | 16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar
)
|
| MobileNetV1_
<br>
ssld | 0.7789 | 0.9394 | 32.523048 | 1.11 | 4.19 | 16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_ssld_pretrained.tar
)
|
| MobileNetV2_
<br>
x0_25 | 0.5321 | 0.7652 | 3.79925 | 0.05 | 1.5 | 6.1 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar
)
|
| MobileNetV2_
<br>
x0_5 | 0.6503 | 0.8572 | 8.7021 | 0.17 | 1.93 | 7.8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar
)
|
| MobileNetV2_
<br>
x0_75 | 0.6983 | 0.8901 | 15.531351 | 0.35 | 2.58 | 10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_75_pretrained.tar
)
|
| MobileNetV2 | 0.7215 | 0.9065 | 23.317699 | 0.6 | 3.44 | 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar
)
|
| MobileNetV2_
<br>
x1_5 | 0.7412 | 0.9167 | 45.623848 | 1.32 | 6.76 | 26 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar
)
|
| MobileNetV2_
<br>
x2_0 | 0.7523 | 0.9258 | 74.291649 | 2.32 | 11.13 | 43 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar
)
|
| MobileNetV2_
<br>
ssld | 0.7674 | 0.9339 | 23.317699 | 0.6 | 3.44 | 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_ssld_pretrained.tar
)
|
| MobileNetV3_
<br>
large_x1_25 | 0.7641 | 0.9295 | 28.217701 | 0.714 | 7.44 | 29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_25_pretrained.tar
)
|
| MobileNetV3_
<br>
large_x1_0 | 0.7532 | 0.9231 | 19.30835 | 0.45 | 5.47 | 21 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_pretrained.tar
)
|
| MobileNetV3_
<br>
large_x0_75 | 0.7314 | 0.9108 | 13.5646 | 0.296 | 3.91 | 16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_75_pretrained.tar
)
|
| MobileNetV3_
<br>
large_x0_5 | 0.6924 | 0.8852 | 7.49315 | 0.138 | 2.67 | 11 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_5_pretrained.tar
)
|
| MobileNetV3_
<br>
large_x0_35 | 0.6432 | 0.8546 | 5.13695 | 0.077 | 2.1 | 8.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_35_pretrained.tar
)
|
| MobileNetV3_
<br>
small_x1_25 | 0.7067 | 0.8951 | 9.2745 | 0.195 | 3.62 | 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_25_pretrained.tar
)
|
| MobileNetV3_
<br>
small_x1_0 | 0.6824 | 0.8806 | 6.5463 | 0.123 | 2.94 | 12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_pretrained.tar
)
|
| MobileNetV3_
<br>
small_x0_75 | 0.6602 | 0.8633 | 5.28435 | 0.088 | 2.37 | 9.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_75_pretrained.tar
)
|
| MobileNetV3_
<br>
small_x0_5 | 0.5921 | 0.8152 | 3.35165 | 0.043 | 1.9 | 7.8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_5_pretrained.tar
)
|
| MobileNetV3_
<br>
small_x0_35 | 0.5303 | 0.7637 | 2.6352 | 0.026 | 1.66 | 6.9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_35_pretrained.tar
)
|
| MobileNetV3_
<br>
small_x0_35_ssld | 0.5555 | 0.7771 | 2.6352 | 0.026 | 1.66 | 6.9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_35_ssld_pretrained.tar
)
|
| MobileNetV3_
<br>
large_x1_0_ssld | 0.7896 | 0.9448 | 19.30835 | 0.45 | 5.47 | 21 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar
)
|
| MobileNetV3_large_
<br>
x1_0_ssld_int8 | 0.7605 | - | 14.395 | - | - | 10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_int8_pretrained.tar
)
|
| MobileNetV3_small_
<br>
x1_0_ssld | 0.7129 | 0.9010 | 6.5463 | 0.123 | 2.94 | 12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_ssld_pretrained.tar
)
|
| ShuffleNetV2 | 0.6880 | 0.8845 | 10.941 | 0.28 | 2.26 | 9 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar
)
|
| ShuffleNetV2_
<br>
x0_25 | 0.4990 | 0.7379 | 2.329 | 0.03 | 0.6 | 2.7 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_25_pretrained.tar
)
|
| ShuffleNetV2_
<br>
x0_33 | 0.5373 | 0.7705 | 2.64335 | 0.04 | 0.64 | 2.8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_33_pretrained.tar
)
|
| ShuffleNetV2_
<br>
x0_5 | 0.6032 | 0.8226 | 4.2613 | 0.08 | 1.36 | 5.6 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_5_pretrained.tar
)
|
| ShuffleNetV2_
<br>
x1_5 | 0.7163 | 0.9015 | 19.3522 | 0.58 | 3.47 | 14 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x1_5_pretrained.tar
)
|
| ShuffleNetV2_
<br>
x2_0 | 0.7315 | 0.9120 | 34.770149 | 1.12 | 7.32 | 28 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x2_0_pretrained.tar
)
|
| ShuffleNetV2_
<br>
swish | 0.7003 | 0.8917 | 16.023151 | 0.29 | 2.26 | 9.1 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_swish_pretrained.tar
)
|
| DARTS_GS_4M | 0.7523 | 0.9215 | 47.204948 | 1.04 | 4.77 | 21 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/DARTS_GS_4M_pretrained.tar
)
|
| DARTS_GS_6M | 0.7603 | 0.9279 | 53.720802 | 1.22 | 5.69 | 24 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/DARTS_GS_6M_pretrained.tar
)
|
| GhostNet_
<br>
x0_5 | 0.6688 | 0.8695 | 5.7143 | 0.082 | 2.6 | 10 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/GhostNet_x0_5_pretrained.pdparams
)
|
| GhostNet_
<br>
x1_0 | 0.7402 | 0.9165 | 13.5587 | 0.294 | 5.2 | 20 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/GhostNet_x1_0_pretrained.pdparams
)
|
| GhostNet_
<br>
x1_3 | 0.7579 | 0.9254 | 19.9825 | 0.44 | 7.3 | 29 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/GhostNet_x1_3_pretrained.pdparams
)
|
<a
name=
"许可证书"
></a>
## 许可证书
本项目的发布受
<a
href=
"https://github.com/PaddlePaddle/PaddleCLS/blob/master/LICENSE"
>
Apache 2.0 license
</a>
许可认证。
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录