diff --git a/docs/zh_CN/tutorials/quick_start_new_user.md b/docs/zh_CN/tutorials/quick_start_new_user.md index 48f55f36aaea30de055016f09caef43f6b74d184..70e726752144fe50798737a40f11382417943990 100644 --- a/docs/zh_CN/tutorials/quick_start_new_user.md +++ b/docs/zh_CN/tutorials/quick_start_new_user.md @@ -167,7 +167,7 @@ python tools/train.py -c ./configs/quick_start/ResNet50_vd_finetune.yaml ```shell cd $path_to_PaddleClas -python tools/infer/infer.py --model ShuffleNetV2_x0_25 -i dataset/flowers102/jpg/image_00001.jpg --pretrained_model output/ShuffleNetV2_x0_25/best_model/ppcls --use_gpu False +python tools/infer/infer.py --model ShuffleNetV2_x0_25 -i dataset/flowers102/jpg/image_00001.jpg --pretrained_model output/ShuffleNetV2_x0_25/best_model/ppcls --class_num 102 --use_gpu False ``` 其中主要参数如下: @@ -175,31 +175,27 @@ python tools/infer/infer.py --model ShuffleNetV2_x0_25 -i dataset/flowers102/jpg - `--model`:训练时使用擦网络模型,如 ShuffleNetV2_x0_25、ResNet50_vd,具体可查看训练时`yaml`文件中**ARCHITECTURE**下 **name**参数的值 - `-i`:图像文件路径或者图像所在目录 - `--pretrained_model`: 存放的模型权重位置。上述CPU训练过程中,最优模型存放位置如下:`output/ShuffleNetV2_x0_25/best_model/ppcls.pdparams`,此时此参数应如下填写:`output/ShuffleNetV2_x0_25/best_model/ppcls`,去掉`.pdparams` +- `--class_num`:为图像类别数,`flowers102`数据集为102类。若用其他数据集,改成相应类别数即可 - `--use_gpu`:是否使用GPU `-i`输入为单张图像路径,运行成功后,示例结果如下: -`File:image_00001.jpg, Top-1 result: class id(s): [728], score(s): [0.03]` +`File:image_00001.jpg, Top-1 result: class id(s): [72], score(s): [0.03]` -`-i`输出为图像目录,运行成功后,示例结果如下: +`-i`输入为图像集所在目录,运行成功后,示例结果如下: ```txt -Current image file: dataset/flowers102/jpg/image_03946.jpg - top1, class id: 124, probability: 0.2043 - top2, class id: 281, probability: 0.1033 - top3, class id: 458, probability: 0.0505 - top4, class id: 688, probability: 0.0379 - top5, class id: 789, probability: 0.0357 -Current image file: dataset/flowers102/jpg/image_02480.jpg - top1, class id: 264, probability: 0.0055 - top2, class id: 570, probability: 0.0041 - top3, class id: 795, probability: 0.0037 - top4, class id: 789, probability: 0.0037 - top5, class id: 268, probability: 0.0033 -Current image file: dataset/flowers102/jpg/image_00297.jpg - top1, class id: 264, probability: 0.0035 - top2, class id: 500, probability: 0.0029 - top3, class id: 65, probability: 0.0027 - top4, class id: 2, probability: 0.0024 - top5, class id: 613, probability: 0.0023 +File:image_02993.jpg, Top-1 result: class id(s): [77], score(s): [0.02] +File:image_00448.jpg, Top-1 result: class id(s): [77], score(s): [0.02] +File:image_08001.jpg, Top-1 result: class id(s): [77], score(s): [0.01] +File:image_00804.jpg, Top-1 result: class id(s): [100], score(s): [0.02] +File:image_01842.jpg, Top-1 result: class id(s): [100], score(s): [0.02] +File:image_02790.jpg, Top-1 result: class id(s): [70], score(s): [0.05] +File:image_03412.jpg, Top-1 result: class id(s): [100], score(s): [0.02] +File:image_05196.jpg, Top-1 result: class id(s): [77], score(s): [0.02] +File:image_06860.jpg, Top-1 result: class id(s): [70], score(s): [0.03] +File:image_05312.jpg, Top-1 result: class id(s): [77], score(s): [0.02] +File:image_05930.jpg, Top-1 result: class id(s): [100], score(s): [0.02] +File:image_05711.jpg, Top-1 result: class id(s): [77], score(s): [0.01] +File:image_01180.jpg, Top-1 result: class id(s): [70], score(s): [0.03] ```