提交 beca8b2c 编写于 作者: Y Yang Nie 提交者: Tingquan Gao

add mobilenext

add cooldown config

update optimizer

fix ParamAttr & update  test_tipc

fix tipc

update tipc config

remove docs of `_make_divisible`

refactor the implementation of "no weight decay"

fix model name

remove cooldown config
上级 28913d94
...@@ -77,6 +77,7 @@ from .model_zoo.nextvit import NextViT_small_224, NextViT_base_224, NextViT_larg ...@@ -77,6 +77,7 @@ from .model_zoo.nextvit import NextViT_small_224, NextViT_base_224, NextViT_larg
from .model_zoo.cae import cae_base_patch16_224, cae_large_patch16_224 from .model_zoo.cae import cae_base_patch16_224, cae_large_patch16_224
from .model_zoo.cvt import CvT_13_224, CvT_13_384, CvT_21_224, CvT_21_384, CvT_W24_384 from .model_zoo.cvt import CvT_13_224, CvT_13_384, CvT_21_224, CvT_21_384, CvT_W24_384
from .model_zoo.micronet import MicroNet_M0, MicroNet_M1, MicroNet_M2, MicroNet_M3 from .model_zoo.micronet import MicroNet_M0, MicroNet_M1, MicroNet_M2, MicroNet_M3
from .model_zoo.mobilenext import MobileNeXt_x0_35, MobileNeXt_x0_5, MobileNeXt_x0_75, MobileNeXt_x1_0, MobileNeXt_x1_4
from .variant_models.resnet_variant import ResNet50_last_stage_stride1 from .variant_models.resnet_variant import ResNet50_last_stage_stride1
from .variant_models.resnet_variant import ResNet50_adaptive_max_pool2d from .variant_models.resnet_variant import ResNet50_adaptive_max_pool2d
......
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Code was heavily based on https://github.com/zhoudaquan/rethinking_bottleneck_design
# reference: https://arxiv.org/abs/2007.02269
import math
import paddle.nn as nn
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"MobileNeXt_x0_35": "", # TODO
"MobileNeXt_x0_5": "", # TODO
"MobileNeXt_x0_75": "", # TODO
"MobileNeXt_x1_0": "", # TODO
"MobileNeXt_x1_4": "", # TODO
}
__all__ = list(MODEL_URLS.keys())
def _make_divisible(v, divisor, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
def conv_3x3_bn(inp, oup, stride):
return nn.Sequential(
nn.Conv2D(
inp, oup, 3, stride, 1, bias_attr=False),
nn.BatchNorm2D(oup),
nn.ReLU6())
class SGBlock(nn.Layer):
def __init__(self, inp, oup, stride, expand_ratio, keep_3x3=False):
super(SGBlock, self).__init__()
assert stride in [1, 2]
hidden_dim = inp // expand_ratio
if hidden_dim < oup / 6.:
hidden_dim = math.ceil(oup / 6.)
hidden_dim = _make_divisible(hidden_dim, 16) # + 16
self.identity = False
self.identity_div = 1
self.expand_ratio = expand_ratio
if expand_ratio == 2:
self.conv = nn.Sequential(
# dw
nn.Conv2D(
inp, inp, 3, 1, 1, groups=inp, bias_attr=False),
nn.BatchNorm2D(inp),
nn.ReLU6(),
# pw-linear
nn.Conv2D(
inp, hidden_dim, 1, 1, 0, bias_attr=False),
nn.BatchNorm2D(hidden_dim),
# pw-linear
nn.Conv2D(
hidden_dim, oup, 1, 1, 0, bias_attr=False),
nn.BatchNorm2D(oup),
nn.ReLU6(),
# dw
nn.Conv2D(
oup, oup, 3, stride, 1, groups=oup, bias_attr=False),
nn.BatchNorm2D(oup))
elif inp != oup and stride == 1 and keep_3x3 == False:
self.conv = nn.Sequential(
# pw-linear
nn.Conv2D(
inp, hidden_dim, 1, 1, 0, bias_attr=False),
nn.BatchNorm2D(hidden_dim),
# pw-linear
nn.Conv2D(
hidden_dim, oup, 1, 1, 0, bias_attr=False),
nn.BatchNorm2D(oup),
nn.ReLU6())
elif inp != oup and stride == 2 and keep_3x3 == False:
self.conv = nn.Sequential(
# pw-linear
nn.Conv2D(
inp, hidden_dim, 1, 1, 0, bias_attr=False),
nn.BatchNorm2D(hidden_dim),
# pw-linear
nn.Conv2D(
hidden_dim, oup, 1, 1, 0, bias_attr=False),
nn.BatchNorm2D(oup),
nn.ReLU6(),
# dw
nn.Conv2D(
oup, oup, 3, stride, 1, groups=oup, bias_attr=False),
nn.BatchNorm2D(oup))
else:
if keep_3x3 == False:
self.identity = True
self.conv = nn.Sequential(
# dw
nn.Conv2D(
inp, inp, 3, 1, 1, groups=inp, bias_attr=False),
nn.BatchNorm2D(inp),
nn.ReLU6(),
# pw
nn.Conv2D(
inp, hidden_dim, 1, 1, 0, bias_attr=False),
nn.BatchNorm2D(hidden_dim),
#nn.ReLU6(),
# pw
nn.Conv2D(
hidden_dim, oup, 1, 1, 0, bias_attr=False),
nn.BatchNorm2D(oup),
nn.ReLU6(),
# dw
nn.Conv2D(
oup, oup, 3, 1, 1, groups=oup, bias_attr=False),
nn.BatchNorm2D(oup))
def forward(self, x):
out = self.conv(x)
if self.identity:
if self.identity_div == 1:
out = out + x
else:
shape = x.shape
id_tensor = x[:, :shape[1] // self.identity_div, :, :]
out[:, :shape[1] // self.identity_div, :, :] = \
out[:, :shape[1] // self.identity_div, :, :] + id_tensor
return out
class MobileNeXt(nn.Layer):
def __init__(self, class_num=1000, width_mult=1.00):
super().__init__()
# setting of inverted residual blocks
self.cfgs = [
# t, c, n, s
[2, 96, 1, 2],
[6, 144, 1, 1],
[6, 192, 3, 2],
[6, 288, 3, 2],
[6, 384, 4, 1],
[6, 576, 4, 2],
[6, 960, 3, 1],
[6, 1280, 1, 1],
]
# building first layer
input_channel = _make_divisible(32 * width_mult, 4
if width_mult == 0.1 else 8)
layers = [conv_3x3_bn(3, input_channel, 2)]
# building inverted residual blocks
block = SGBlock
for t, c, n, s in self.cfgs:
output_channel = _make_divisible(c * width_mult, 4
if width_mult == 0.1 else 8)
if c == 1280 and width_mult < 1:
output_channel = 1280
layers.append(
block(input_channel, output_channel, s, t, n == 1 and s == 1))
input_channel = output_channel
for _ in range(n - 1):
layers.append(block(input_channel, output_channel, 1, t))
input_channel = output_channel
self.features = nn.Sequential(*layers)
# building last several layers
input_channel = output_channel
output_channel = _make_divisible(input_channel, 4)
self.avgpool = nn.AdaptiveAvgPool2D((1, 1))
self.classifier = nn.Sequential(
nn.Dropout(0.2), nn.Linear(output_channel, class_num))
self.apply(self._initialize_weights)
def _initialize_weights(self, m):
if isinstance(m, nn.Conv2D):
n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
nn.initializer.Normal(std=math.sqrt(2. / n))(m.weight)
if m.bias is not None:
nn.initializer.Constant(0)(m.bias)
elif isinstance(m, nn.BatchNorm2D):
nn.initializer.Constant(1)(m.weight)
nn.initializer.Constant(0)(m.bias)
elif isinstance(m, nn.Linear):
nn.initializer.Normal(std=0.01)(m.weight)
nn.initializer.Constant(0)(m.bias)
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = x.flatten(1)
x = self.classifier(x)
return x
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def MobileNeXt_x0_35(pretrained=False, use_ssld=False, **kwargs):
model = MobileNeXt(width_mult=0.35, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["MobileNeXt_x0_35"], use_ssld=use_ssld)
return model
def MobileNeXt_x0_5(pretrained=False, use_ssld=False, **kwargs):
model = MobileNeXt(width_mult=0.50, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["MobileNeXt_x0_5"], use_ssld=use_ssld)
return model
def MobileNeXt_x0_75(pretrained=False, use_ssld=False, **kwargs):
model = MobileNeXt(width_mult=0.75, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["MobileNeXt_x0_75"], use_ssld=use_ssld)
return model
def MobileNeXt_x1_0(pretrained=False, use_ssld=False, **kwargs):
model = MobileNeXt(width_mult=1.00, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["MobileNeXt_x1_0"], use_ssld=use_ssld)
return model
def MobileNeXt_x1_4(pretrained=False, use_ssld=False, **kwargs):
model = MobileNeXt(width_mult=1.40, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["MobileNeXt_x1_4"], use_ssld=use_ssld)
return model
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 200
print_batch_step: 50
use_visualdl: False
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: ./inference
# training model under @to_static
to_static: False
# model architecture
Arch:
name: MobileNeXt_x1_0
class_num: 1000
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
use_nesterov: True
no_weight_decay_name: .bias
one_dim_param_no_weight_decay: True
lr:
name: Cosine
learning_rate: 0.1 # for total batch size 512
eta_min: 1e-5
warmup_epoch: 3
warmup_start_lr: 1e-4
by_epoch: True
regularizer:
name: 'L2'
coeff: 1e-4
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
backend: pil
- RandCropImage:
size: 224
interpolation: random
backend: pil
- RandFlipImage:
flip_code: 1
- ColorJitter:
brightness: 0.4
contrast: 0.4
saturation: 0.4
hue: 0
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128 # for 4 gpus
drop_last: True
shuffle: True
loader:
num_workers: 8
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
backend: pil
- ResizeImage:
resize_short: 256
interpolation: bicubic
backend: pil
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 256
drop_last: False
shuffle: False
loader:
num_workers: 8
use_shared_memory: True
Infer:
infer_imgs: docs/images/inference_deployment/whl_demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
backend: pil
- ResizeImage:
resize_short: 256
interpolation: bicubic
backend: pil
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 5
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
Metric:
Train:
- TopkAcc:
topk: [1, 5]
Eval:
- TopkAcc:
topk: [1, 5]
...@@ -96,7 +96,8 @@ class Momentum(object): ...@@ -96,7 +96,8 @@ class Momentum(object):
grad_clip=None, grad_clip=None,
use_nesterov=False, use_nesterov=False,
multi_precision=True, multi_precision=True,
no_weight_decay_name=None): no_weight_decay_name=None,
one_dim_param_no_weight_decay=False):
super().__init__() super().__init__()
self.learning_rate = learning_rate self.learning_rate = learning_rate
self.momentum = momentum self.momentum = momentum
...@@ -106,6 +107,7 @@ class Momentum(object): ...@@ -106,6 +107,7 @@ class Momentum(object):
self.use_nesterov = use_nesterov self.use_nesterov = use_nesterov
self.no_weight_decay_name_list = no_weight_decay_name.split( self.no_weight_decay_name_list = no_weight_decay_name.split(
) if no_weight_decay_name else [] ) if no_weight_decay_name else []
self.one_dim_param_no_weight_decay = one_dim_param_no_weight_decay
def __call__(self, model_list): def __call__(self, model_list):
# model_list is None in static graph # model_list is None in static graph
...@@ -118,7 +120,7 @@ class Momentum(object): ...@@ -118,7 +120,7 @@ class Momentum(object):
if not any(nd in n for nd in self.no_weight_decay_name_list)] if not any(nd in n for nd in self.no_weight_decay_name_list)]
params_with_decay.extend(params) params_with_decay.extend(params)
params = [p for n, p in m.named_parameters() \ params = [p for n, p in m.named_parameters() \
if any(nd in n for nd in self.no_weight_decay_name_list)] if any(nd in n for nd in self.no_weight_decay_name_list) or (self.one_dim_param_no_weight_decay and len(p.shape) == 1)]
params_without_decay.extend(params) params_without_decay.extend(params)
parameters = [{ parameters = [{
"params": params_with_decay, "params": params_with_decay,
......
===========================train_params===========================
model_name:MobileNeXt_x1_0
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNeXt/MobileNeXt_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNeXt/MobileNeXt_x1_0.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNeXt/MobileNeXt_x1_0.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
inference_dir:null
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.interpolation=bicubic -o PreProcess.transform_ops.0.ResizeImage.backend=pil
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val/ILSVRC2012_val_00000001.JPEG
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册