diff --git a/docs/zh_CN/models/ImageNet1k/MobileViTv2.md b/docs/zh_CN/models/ImageNet1k/MobileViTv2.md new file mode 100644 index 0000000000000000000000000000000000000000..bcec05084fc7d951b2cf2ad0a95a6a6686d7908e --- /dev/null +++ b/docs/zh_CN/models/ImageNet1k/MobileViTv2.md @@ -0,0 +1,103 @@ +# MobileViTv2 +----- + +## 目录 + +- [1. 模型介绍](#1) + - [1.1 模型简介](#1.1) + - [1.2 模型指标](#1.2) +- [2. 模型快速体验](#2) +- [3. 模型训练、评估和预测](#3) +- [4. 模型推理部署](#4) + - [4.1 推理模型准备](#4.1) + - [4.2 基于 Python 预测引擎推理](#4.2) + - [4.3 基于 C++ 预测引擎推理](#4.3) + - [4.4 服务化部署](#4.4) + - [4.5 端侧部署](#4.5) + - [4.6 Paddle2ONNX 模型转换与预测](#4.6) + + + +## 1. 模型介绍 + + + +### 1.1 模型简介 + +MobileViTv2 是一个结合 CNN 和 ViT 的轻量级模型,用于移动视觉任务。通过 MobileViTv2-block 解决了 MobileViTv1 的扩展问题并简化了学习任务,从而得倒了 MobileViTv2-XXS、XS 和 S 模型,在 ImageNet-1k、ADE20K、COCO 和 PascalVOC2012 数据集上表现优于 MobileViTv1。 +通过将提出的融合块添加到 MobileViTv2 中,创建 MobileViTv2-0.5、0.75 和 1.0 模型,在ImageNet-1k、ADE20K、COCO和PascalVOC2012数据集上给出了比 MobileViTv2 更好的准确性数据。[论文地址](https://arxiv.org/abs/2209.15159)。 + + + +### 1.2 模型指标 + +| Models | Top1 | Top5 | Reference
top1 | Reference
top5 | FLOPs
(G) | Params
(M) | +|:--:|:--:|:--:|:--:|:--:|:--:|:--:| +| MobileViTv2_x0_5 | 0.7017 | 0.89884 | 0.7018 | - | 480.46 | 1.37 | +| MobileViTv2_x1_0 | 0.7813 | 0.94172 | 0.7809 | - | 1843.81 | 4.90 | +| MobileViTv2_x1_5 | 0.8034 | 0.95094 | 0.8038 | - | 4090.07 | 10.60 | +| MobileViTv2_x2_0 | 0.8116 | 0.95370 | 0.8117 | - | 7219.23 | 18.45 | + +**备注:** PaddleClas 所提供的该系列模型的预训练模型权重,均是基于其官方提供的权重转得。 + + + +## 2. 模型快速体验 + +安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2)。 + + + +## 3. 模型训练、评估和预测 + +此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/MobileViTv2/` 中提供了该模型的训练配置,启动训练方法可以参考:[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)。 + +**备注:** 由于 MobileViT 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。 + + + +## 4. 模型推理部署 + + + +### 4.1 推理模型准备 + +Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)。 + +Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#4.1) 。 + + + +### 4.2 基于 Python 预测引擎推理 + +PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#4.2) 完成模型的推理预测。 + + + +### 4.3 基于 C++ 预测引擎推理 + +PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。 + + + +### 4.4 服务化部署 + +Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)。 + +PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。 + + + +### 4.5 端侧部署 + +Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)。 + +PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。 + + + +### 4.6 Paddle2ONNX 模型转换与预测 + +Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)。 + +PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。 diff --git a/docs/zh_CN/models/ImageNet1k/README.md b/docs/zh_CN/models/ImageNet1k/README.md index 20965e340a4e368b98b5da932c7c43638a8b0fd8..ff7eaba91f8a09c53aff9015d5c9e8aea8810953 100644 --- a/docs/zh_CN/models/ImageNet1k/README.md +++ b/docs/zh_CN/models/ImageNet1k/README.md @@ -798,13 +798,17 @@ DeiT(Data-efficient Image Transformers)系列模型的精度、速度指标 ## MobileViT 系列 [[42](#ref42)][[51](#ref51)] -关于 MobileViT 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[MobileViT 系列模型文档](MobileViT.md), [MobileViTv3 系列模型文档](MobileViTv3.md)。 +关于 MobileViT 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[MobileViT 系列模型文档](MobileViT.md),[MobileViTv2 系列模型文档](MobileViTv2.md),[MobileViTv3 系列模型文档](MobileViTv3.md)。 | 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 | | ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | | MobileViT_XXS | 0.6867 | 0.8878 | - | - | - | 337.24 | 1.28 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_XXS_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_XXS_infer.tar) | | MobileViT_XS | 0.7454 | 0.9227 | - | - | - | 930.75 | 2.33 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_XS_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_XS_infer.tar) | | MobileViT_S | 0.7814 | 0.9413 | - | - | - | 1849.35 | 5.59 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_S_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_S_infer.tar) | +| MobileViTv2_x0_5 | 0.7017 | 0.8988 | - | - | - | 480.46 | 1.37 | [下载链接]() | [下载链接]() | +| MobileViTv2_x1_0 | 0.7813 | 0.9417 | - | - | - | 1843.81 | 4.90 | [下载链接]() | [下载链接]() | +| MobileViTv2_x1_5 | 0.8034 | 0.9509 | - | - | - | 4090.07 | 10.60 | [下载链接]() | [下载链接]() | +| MobileViTv2_x2_0 | 0.8116 | 0.9537 | - | - | - | 7219.23 | 18.45 | [下载链接]() | [下载链接]() | | MobileViTv3_XXS | 0.7087 | 0.8976 | - | - | - | 289.02 | 1.25 | [下载链接]() | [下载链接]() | | MobileViTv3_XS | 0.7663 | 0.9332 | - | - | - | 926.98 | 2.49 | [下载链接]() | [下载链接]() | | MobileViTv3_S | 0.7928 | 0.9454 | - | - | - | 1841.39 | 5.76 | [下载链接]() | [下载链接]() | @@ -920,4 +924,8 @@ TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE. [50]Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo. Swin Transformer V2: Scaling Up Capacity and Resolution +<<<<<<< HEAD [51]Wadekar, Shakti N. and Chaurasia, Abhishek. MobileViTv3: Mobile-Friendly Vision Transformer with Simple and Effective Fusion of Local, Global and Input Features +======= +[51]Sachin Mehta and Mohammad Rastegari. Separable Self-attention for Mobile Vision Transformers +>>>>>>> add MobileViTv2 diff --git a/ppcls/arch/backbone/__init__.py b/ppcls/arch/backbone/__init__.py index 95b0f7e3618ab46e27436aef4eb02f626ad77469..42ea557e6902151833f4fa6a7736ab34e377bb90 100644 --- a/ppcls/arch/backbone/__init__.py +++ b/ppcls/arch/backbone/__init__.py @@ -78,6 +78,7 @@ from .model_zoo.cae import cae_base_patch16_224, cae_large_patch16_224 from .model_zoo.cvt import CvT_13_224, CvT_13_384, CvT_21_224, CvT_21_384, CvT_W24_384 from .model_zoo.micronet import MicroNet_M0, MicroNet_M1, MicroNet_M2, MicroNet_M3 from .model_zoo.mobilenext import MobileNeXt_x0_35, MobileNeXt_x0_5, MobileNeXt_x0_75, MobileNeXt_x1_0, MobileNeXt_x1_4 +from .model_zoo.mobilevit_v2 import MobileViTv2_x0_5, MobileViTv2_x0_75, MobileViTv2_x1_0, MobileViTv2_x1_25, MobileViTv2_x1_5, MobileViTv2_x1_75, MobileViTv2_x2_0 from .model_zoo.mobilevit_v3 import MobileViTv3_XXS, MobileViTv3_XS, MobileViTv3_S, MobileViTv3_XXS_L2, MobileViTv3_XS_L2, MobileViTv3_S_L2, MobileViTv3_x0_5, MobileViTv3_x0_75, MobileViTv3_x1_0 from .variant_models.resnet_variant import ResNet50_last_stage_stride1 diff --git a/ppcls/arch/backbone/model_zoo/mobilevit_v2.py b/ppcls/arch/backbone/model_zoo/mobilevit_v2.py new file mode 100644 index 0000000000000000000000000000000000000000..741b5a6624af5d2e604670708d146b2f59b24a3f --- /dev/null +++ b/ppcls/arch/backbone/model_zoo/mobilevit_v2.py @@ -0,0 +1,603 @@ +# copyright (c) 2023 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# Code was based on https://github.com/apple/ml-cvnets/blob/7be93d3debd45c240a058e3f34a9e88d33c07a7d/cvnets/models/classification/mobilevit_v2.py +# reference: https://arxiv.org/abs/2206.02680 + +from functools import partial +from typing import Dict, Optional, Tuple, Union + +import paddle +import paddle.nn as nn +import paddle.nn.functional as F + +from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url + +MODEL_URLS = { + "MobileViTv2_x0_5": "", + "MobileViTv2_x0_75": "", + "MobileViTv2_x1_0": "", + "MobileViTv2_x1_25": "", + "MobileViTv2_x1_5": "", + "MobileViTv2_x1_75": "", + "MobileViTv2_x2_0": "", +} + +layer_norm_2d = partial(nn.GroupNorm, num_groups=1) + + +def make_divisible(v, divisor=8, min_value=None): + if min_value is None: + min_value = divisor + new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) + if new_v < 0.9 * v: + new_v += divisor + return new_v + + +class InvertedResidual(nn.Layer): + """ + Inverted residual block (MobileNetv2): https://arxiv.org/abs/1801.04381 + """ + + def __init__(self, + in_channels: int, + out_channels: int, + stride: int, + expand_ratio: Union[int, float], + dilation: int=1, + skip_connection: Optional[bool]=True) -> None: + assert stride in [1, 2] + super(InvertedResidual, self).__init__() + self.stride = stride + + hidden_dim = make_divisible(int(round(in_channels * expand_ratio)), 8) + self.use_res_connect = self.stride == 1 and in_channels == out_channels and skip_connection + + block = nn.Sequential() + if expand_ratio != 1: + block.add_sublayer( + name="exp_1x1", + sublayer=nn.Sequential( + ('conv', nn.Conv2D( + in_channels, hidden_dim, 1, bias_attr=False)), + ('norm', nn.BatchNorm2D(hidden_dim)), ('act', nn.Silu()))) + + block.add_sublayer( + name="conv_3x3", + sublayer=nn.Sequential( + ('conv', nn.Conv2D( + hidden_dim, + hidden_dim, + 3, + bias_attr=False, + stride=stride, + padding=dilation, + dilation=dilation, + groups=hidden_dim)), ('norm', nn.BatchNorm2D(hidden_dim)), + ('act', nn.Silu()))) + + block.add_sublayer( + name="red_1x1", + sublayer=nn.Sequential( + ('conv', nn.Conv2D( + hidden_dim, out_channels, 1, bias_attr=False)), + ('norm', nn.BatchNorm2D(out_channels)))) + + self.block = block + self.in_channels = in_channels + self.out_channels = out_channels + self.exp = expand_ratio + self.dilation = dilation + + def forward(self, x, *args, **kwargs): + if self.use_res_connect: + return x + self.block(x) + else: + return self.block(x) + + +class LinearSelfAttention(nn.Layer): + def __init__(self, embed_dim, attn_dropout=0.0, bias=True): + super().__init__() + self.embed_dim = embed_dim + self.qkv_proj = nn.Conv2D( + embed_dim, 1 + (2 * embed_dim), 1, bias_attr=bias) + self.attn_dropout = nn.Dropout(p=attn_dropout) + self.out_proj = nn.Conv2D(embed_dim, embed_dim, 1, bias_attr=bias) + + def forward(self, x): + # [B, C, P, N] --> [B, h + 2d, P, N] + qkv = self.qkv_proj(x) + + # Project x into query, key and value + # Query --> [B, 1, P, N] + # value, key --> [B, d, P, N] + query, key, value = paddle.split( + qkv, [1, self.embed_dim, self.embed_dim], axis=1) + + # apply softmax along N dimension + context_scores = F.softmax(query, axis=-1) + # Uncomment below line to visualize context scores + # self.visualize_context_scores(context_scores=context_scores) + context_scores = self.attn_dropout(context_scores) + + # Compute context vector + # [B, d, P, N] x [B, 1, P, N] -> [B, d, P, N] + context_vector = key * context_scores + # [B, d, P, N] --> [B, d, P, 1] + context_vector = paddle.sum(context_vector, axis=-1, keepdim=True) + + # combine context vector with values + # [B, d, P, N] * [B, d, P, 1] --> [B, d, P, N] + out = F.relu(value) * context_vector + out = self.out_proj(out) + return out + + +class LinearAttnFFN(nn.Layer): + def __init__(self, + embed_dim: int, + ffn_latent_dim: int, + attn_dropout: Optional[float]=0.0, + dropout: Optional[float]=0.1, + ffn_dropout: Optional[float]=0.0, + norm_layer: Optional[str]=layer_norm_2d) -> None: + super().__init__() + attn_unit = LinearSelfAttention( + embed_dim=embed_dim, attn_dropout=attn_dropout, bias=True) + + self.pre_norm_attn = nn.Sequential( + norm_layer(num_channels=embed_dim), + attn_unit, + nn.Dropout(p=dropout)) + + self.pre_norm_ffn = nn.Sequential( + norm_layer(num_channels=embed_dim), + nn.Conv2D(embed_dim, ffn_latent_dim, 1), + nn.Silu(), + nn.Dropout(p=ffn_dropout), + nn.Conv2D(ffn_latent_dim, embed_dim, 1), + nn.Dropout(p=dropout)) + + def forward(self, x): + # self-attention + x = x + self.pre_norm_attn(x) + # Feed forward network + x = x + self.pre_norm_ffn(x) + return x + + +class MobileViTv2Block(nn.Layer): + """ + This class defines the `MobileViTv2 block` + """ + + def __init__(self, + in_channels: int, + attn_unit_dim: int, + ffn_multiplier: float=2.0, + n_attn_blocks: Optional[int]=2, + attn_dropout: Optional[float]=0.0, + dropout: Optional[float]=0.0, + ffn_dropout: Optional[float]=0.0, + patch_h: Optional[int]=8, + patch_w: Optional[int]=8, + conv_ksize: Optional[int]=3, + dilation: Optional[int]=1, + attn_norm_layer: Optional[str]=layer_norm_2d): + cnn_out_dim = attn_unit_dim + + padding = (conv_ksize - 1) // 2 * dilation + conv_3x3_in = nn.Sequential( + ('conv', nn.Conv2D( + in_channels, + in_channels, + conv_ksize, + bias_attr=False, + padding=padding, + dilation=dilation, + groups=in_channels)), ('norm', nn.BatchNorm2D(in_channels)), + ('act', nn.Silu())) + conv_1x1_in = nn.Sequential(('conv', nn.Conv2D( + in_channels, cnn_out_dim, 1, bias_attr=False))) + + super().__init__() + self.local_rep = nn.Sequential(conv_3x3_in, conv_1x1_in) + + self.global_rep, attn_unit_dim = self._build_attn_layer( + d_model=attn_unit_dim, + ffn_mult=ffn_multiplier, + n_layers=n_attn_blocks, + attn_dropout=attn_dropout, + dropout=dropout, + ffn_dropout=ffn_dropout, + attn_norm_layer=attn_norm_layer) + + self.conv_proj = nn.Sequential( + ('conv', nn.Conv2D( + cnn_out_dim, in_channels, 1, bias_attr=False)), + ('norm', nn.BatchNorm2D(in_channels))) + + self.patch_h = patch_h + self.patch_w = patch_w + + def _build_attn_layer(self, + d_model: int, + ffn_mult: float, + n_layers: int, + attn_dropout: float, + dropout: float, + ffn_dropout: float, + attn_norm_layer: nn.Layer): + + # ensure that dims are multiple of 16 + ffn_dims = [ffn_mult * d_model // 16 * 16] * n_layers + + global_rep = [ + LinearAttnFFN( + embed_dim=d_model, + ffn_latent_dim=ffn_dims[block_idx], + attn_dropout=attn_dropout, + dropout=dropout, + ffn_dropout=ffn_dropout, + norm_layer=attn_norm_layer) for block_idx in range(n_layers) + ] + global_rep.append(attn_norm_layer(num_channels=d_model)) + + return nn.Sequential(*global_rep), d_model + + def unfolding(self, feature_map): + batch_size, in_channels, img_h, img_w = feature_map.shape + + # [B, C, H, W] --> [B, C, P, N] + patches = F.unfold( + feature_map, + kernel_sizes=[self.patch_h, self.patch_w], + strides=[self.patch_h, self.patch_w]) + n_patches = img_h * img_w // (self.patch_h * self.patch_w) + patches = patches.reshape( + [batch_size, in_channels, self.patch_h * self.patch_w, n_patches]) + + return patches, (img_h, img_w) + + def folding(self, patches, output_size: Tuple[int, int]): + batch_size, in_dim, patch_size, n_patches = patches.shape + + # [B, C, P, N] + patches = patches.reshape([batch_size, in_dim * patch_size, n_patches]) + + feature_map = F.fold( + patches, + output_size, + kernel_sizes=[self.patch_h, self.patch_w], + strides=[self.patch_h, self.patch_w]) + + return feature_map + + def forward(self, x): + fm = self.local_rep(x) + + # convert feature map to patches + patches, output_size = self.unfolding(fm) + + # learn global representations on all patches + patches = self.global_rep(patches) + + # [B x Patch x Patches x C] --> [B x C x Patches x Patch] + fm = self.folding(patches=patches, output_size=output_size) + fm = self.conv_proj(fm) + + return fm + + +class MobileViTv2(nn.Layer): + """ + MobileViTv2 + """ + + def __init__(self, + mobilevit_config: Dict, + class_num=1000, + output_stride=None): + super().__init__() + self.round_nearest = 8 + self.dilation = 1 + + dilate_l4 = dilate_l5 = False + if output_stride == 8: + dilate_l4 = True + dilate_l5 = True + elif output_stride == 16: + dilate_l5 = True + + # store model configuration in a dictionary + in_channels = mobilevit_config["layer0"]["img_channels"] + out_channels = mobilevit_config["layer0"]["out_channels"] + self.conv_1 = nn.Sequential( + ('conv', nn.Conv2D( + in_channels, + out_channels, + 3, + bias_attr=False, + stride=2, + padding=1)), ('norm', nn.BatchNorm2D(out_channels)), + ('act', nn.Silu())) + + in_channels = out_channels + self.layer_1, out_channels = self._make_layer( + input_channel=in_channels, cfg=mobilevit_config["layer1"]) + + in_channels = out_channels + self.layer_2, out_channels = self._make_layer( + input_channel=in_channels, cfg=mobilevit_config["layer2"]) + + in_channels = out_channels + self.layer_3, out_channels = self._make_layer( + input_channel=in_channels, cfg=mobilevit_config["layer3"]) + + in_channels = out_channels + self.layer_4, out_channels = self._make_layer( + input_channel=in_channels, + cfg=mobilevit_config["layer4"], + dilate=dilate_l4) + + in_channels = out_channels + self.layer_5, out_channels = self._make_layer( + input_channel=in_channels, + cfg=mobilevit_config["layer5"], + dilate=dilate_l5) + + self.conv_1x1_exp = nn.Identity() + self.classifier = nn.Sequential() + self.classifier.add_sublayer( + name="global_pool", + sublayer=nn.Sequential(nn.AdaptiveAvgPool2D(1), nn.Flatten())) + self.classifier.add_sublayer( + name="fc", sublayer=nn.Linear(out_channels, class_num)) + + # weight initialization + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Conv2D): + fan_in = m.weight.shape[1] * m.weight.shape[2] * m.weight.shape[3] + bound = 1.0 / fan_in**0.5 + nn.initializer.Uniform(-bound, bound)(m.weight) + if m.bias is not None: + nn.initializer.Uniform(-bound, bound)(m.bias) + elif isinstance(m, (nn.BatchNorm2D, nn.GroupNorm)): + nn.initializer.Constant(1)(m.weight) + nn.initializer.Constant(0)(m.bias) + elif isinstance(m, nn.Linear): + nn.initializer.XavierUniform()(m.weight) + if m.bias is not None: + nn.initializer.Constant(0)(m.bias) + + def _make_layer(self, input_channel, cfg, dilate=False): + block_type = cfg.get("block_type", "mobilevit") + if block_type.lower() == "mobilevit": + return self._make_mit_layer( + input_channel=input_channel, cfg=cfg, dilate=dilate) + else: + return self._make_mobilenet_layer( + input_channel=input_channel, cfg=cfg) + + def _make_mit_layer(self, input_channel, cfg, dilate=False): + prev_dilation = self.dilation + block = [] + stride = cfg.get("stride", 1) + + if stride == 2: + if dilate: + self.dilation *= 2 + stride = 1 + + layer = InvertedResidual( + in_channels=input_channel, + out_channels=cfg.get("out_channels"), + stride=stride, + expand_ratio=cfg.get("mv_expand_ratio", 4), + dilation=prev_dilation) + + block.append(layer) + input_channel = cfg.get("out_channels") + + block.append( + MobileViTv2Block( + in_channels=input_channel, + attn_unit_dim=cfg["attn_unit_dim"], + ffn_multiplier=cfg.get("ffn_multiplier"), + n_attn_blocks=cfg.get("attn_blocks", 1), + ffn_dropout=0., + attn_dropout=0., + dilation=self.dilation, + patch_h=cfg.get("patch_h", 2), + patch_w=cfg.get("patch_w", 2))) + + return nn.Sequential(*block), input_channel + + def _make_mobilenet_layer(self, input_channel, cfg): + output_channels = cfg.get("out_channels") + num_blocks = cfg.get("num_blocks", 2) + expand_ratio = cfg.get("expand_ratio", 4) + block = [] + + for i in range(num_blocks): + stride = cfg.get("stride", 1) if i == 0 else 1 + + layer = InvertedResidual( + in_channels=input_channel, + out_channels=output_channels, + stride=stride, + expand_ratio=expand_ratio) + block.append(layer) + input_channel = output_channels + return nn.Sequential(*block), input_channel + + def extract_features(self, x): + x = self.conv_1(x) + x = self.layer_1(x) + x = self.layer_2(x) + x = self.layer_3(x) + + x = self.layer_4(x) + x = self.layer_5(x) + x = self.conv_1x1_exp(x) + return x + + def forward(self, x): + x = self.extract_features(x) + x = self.classifier(x) + return x + + +def _load_pretrained(pretrained, model, model_url, use_ssld=False): + if pretrained is False: + pass + elif pretrained is True: + load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) + elif isinstance(pretrained, str): + load_dygraph_pretrain(model, pretrained) + else: + raise RuntimeError( + "pretrained type is not available. Please use `string` or `boolean` type." + ) + + +def get_configuration(width_multiplier) -> Dict: + ffn_multiplier = 2 + mv2_exp_mult = 2 # max(1.0, min(2.0, 2.0 * width_multiplier)) + + layer_0_dim = max(16, min(64, 32 * width_multiplier)) + layer_0_dim = int(make_divisible(layer_0_dim, divisor=8, min_value=16)) + config = { + "layer0": { + "img_channels": 3, + "out_channels": layer_0_dim, + }, + "layer1": { + "out_channels": int(make_divisible(64 * width_multiplier, divisor=16)), + "expand_ratio": mv2_exp_mult, + "num_blocks": 1, + "stride": 1, + "block_type": "mv2", + }, + "layer2": { + "out_channels": int(make_divisible(128 * width_multiplier, divisor=8)), + "expand_ratio": mv2_exp_mult, + "num_blocks": 2, + "stride": 2, + "block_type": "mv2", + }, + "layer3": { # 28x28 + "out_channels": int(make_divisible(256 * width_multiplier, divisor=8)), + "attn_unit_dim": int(make_divisible(128 * width_multiplier, divisor=8)), + "ffn_multiplier": ffn_multiplier, + "attn_blocks": 2, + "patch_h": 2, + "patch_w": 2, + "stride": 2, + "mv_expand_ratio": mv2_exp_mult, + "block_type": "mobilevit", + }, + "layer4": { # 14x14 + "out_channels": int(make_divisible(384 * width_multiplier, divisor=8)), + "attn_unit_dim": int(make_divisible(192 * width_multiplier, divisor=8)), + "ffn_multiplier": ffn_multiplier, + "attn_blocks": 4, + "patch_h": 2, + "patch_w": 2, + "stride": 2, + "mv_expand_ratio": mv2_exp_mult, + "block_type": "mobilevit", + }, + "layer5": { # 7x7 + "out_channels": int(make_divisible(512 * width_multiplier, divisor=8)), + "attn_unit_dim": int(make_divisible(256 * width_multiplier, divisor=8)), + "ffn_multiplier": ffn_multiplier, + "attn_blocks": 3, + "patch_h": 2, + "patch_w": 2, + "stride": 2, + "mv_expand_ratio": mv2_exp_mult, + "block_type": "mobilevit", + }, + "last_layer_exp_factor": 4, + } + + return config + + +def MobileViTv2_x2_0(pretrained=False, use_ssld=False, **kwargs): + width_multiplier = 2.0 + model = MobileViTv2(get_configuration(width_multiplier), **kwargs) + + _load_pretrained( + pretrained, model, MODEL_URLS["MobileViTv2_x2_0"], use_ssld=use_ssld) + return model + + +def MobileViTv2_x1_75(pretrained=False, use_ssld=False, **kwargs): + width_multiplier = 1.75 + model = MobileViTv2(get_configuration(width_multiplier), **kwargs) + + _load_pretrained( + pretrained, model, MODEL_URLS["MobileViTv2_x1_75"], use_ssld=use_ssld) + return model + + +def MobileViTv2_x1_5(pretrained=False, use_ssld=False, **kwargs): + width_multiplier = 1.5 + model = MobileViTv2(get_configuration(width_multiplier), **kwargs) + + _load_pretrained( + pretrained, model, MODEL_URLS["MobileViTv2_x1_5"], use_ssld=use_ssld) + return model + + +def MobileViTv2_x1_25(pretrained=False, use_ssld=False, **kwargs): + width_multiplier = 1.25 + model = MobileViTv2(get_configuration(width_multiplier), **kwargs) + + _load_pretrained( + pretrained, model, MODEL_URLS["MobileViTv2_x1_25"], use_ssld=use_ssld) + return model + + +def MobileViTv2_x1_0(pretrained=False, use_ssld=False, **kwargs): + width_multiplier = 1.0 + model = MobileViTv2(get_configuration(width_multiplier), **kwargs) + + _load_pretrained( + pretrained, model, MODEL_URLS["MobileViTv2_x1_0"], use_ssld=use_ssld) + return model + + +def MobileViTv2_x0_75(pretrained=False, use_ssld=False, **kwargs): + width_multiplier = 0.75 + model = MobileViTv2(get_configuration(width_multiplier), **kwargs) + + _load_pretrained( + pretrained, model, MODEL_URLS["MobileViTv2_x0_75"], use_ssld=use_ssld) + return model + + +def MobileViTv2_x0_5(pretrained=False, use_ssld=False, **kwargs): + width_multiplier = 0.5 + model = MobileViTv2(get_configuration(width_multiplier), **kwargs) + + _load_pretrained( + pretrained, model, MODEL_URLS["MobileViTv2_x0_5"], use_ssld=use_ssld) + return model diff --git a/ppcls/configs/ImageNet/MobileViTv2/MobileViTv2_x0_5.yaml b/ppcls/configs/ImageNet/MobileViTv2/MobileViTv2_x0_5.yaml new file mode 100644 index 0000000000000000000000000000000000000000..e60b28cafbdd654e8650e6f84912f3bf767e802c --- /dev/null +++ b/ppcls/configs/ImageNet/MobileViTv2/MobileViTv2_x0_5.yaml @@ -0,0 +1,173 @@ +# global configs +Global: + checkpoints: null + pretrained_model: null + output_dir: ./output/ + device: gpu + save_interval: 1 + eval_during_train: True + eval_interval: 1 + epochs: 300 + print_batch_step: 10 + use_visualdl: False + # used for static mode and model export + image_shape: [3, 256, 256] + save_inference_dir: ./inference + use_dali: False + +# mixed precision training +AMP: + scale_loss: 65536 + use_dynamic_loss_scaling: True + # O1: mixed fp16 + level: O1 + +# model ema +EMA: + decay: 0.9995 + +# model architecture +Arch: + name: MobileViTv2_x0_5 + class_num: 1000 + +# loss function config for traing/eval process +Loss: + Train: + - CELoss: + weight: 1.0 + epsilon: 0.1 + Eval: + - CELoss: + weight: 1.0 + +Optimizer: + name: AdamW + beta1: 0.9 + beta2: 0.999 + epsilon: 1e-8 + weight_decay: 0.004 + one_dim_param_no_weight_decay: True + lr: + # for 8 cards + name: Cosine + learning_rate: 0.009 + eta_min: 0.0009 + warmup_epoch: 16 # 20000 iterations + warmup_start_lr: 1e-6 + # by_epoch: True + clip_norm: 10 + +# data loader for train and eval +DataLoader: + Train: + dataset: + name: ImageNetDataset + image_root: ./dataset/ILSVRC2012/ + cls_label_path: ./dataset/ILSVRC2012/train_list.txt + transform_ops: + - DecodeImage: + to_rgb: True + channel_first: False + backend: pil + - RandCropImage: + size: 256 + interpolation: bicubic + backend: pil + use_log_aspect: True + - RandFlipImage: + flip_code: 1 + - RandAugmentV3: + num_layers: 2 + interpolation: bicubic + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.0, 0.0, 0.0] + std: [1.0, 1.0, 1.0] + order: '' + - RandomErasing: + EPSILON: 0.25 + sl: 0.02 + sh: 1.0/3.0 + r1: 0.3 + attempt: 10 + use_log_aspect: True + mode: const + batch_transform_ops: + - OpSampler: + MixupOperator: + alpha: 0.2 + prob: 0.25 + CutmixOperator: + alpha: 1.0 + prob: 0.25 + sampler: + name: DistributedBatchSampler + batch_size: 128 + drop_last: False + shuffle: True + loader: + num_workers: 4 + use_shared_memory: True + Eval: + dataset: + name: ImageNetDataset + image_root: ./dataset/ILSVRC2012/ + cls_label_path: ./dataset/ILSVRC2012/val_list.txt + transform_ops: + - DecodeImage: + to_np: False + channel_first: False + backend: pil + - ResizeImage: + resize_short: 288 + interpolation: bicubic + backend: pil + - CropImage: + size: 256 + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.0, 0.0, 0.0] + std: [1.0, 1.0, 1.0] + order: '' + sampler: + name: DistributedBatchSampler + batch_size: 128 + drop_last: False + shuffle: False + loader: + num_workers: 4 + use_shared_memory: True + +Infer: + infer_imgs: docs/images/inference_deployment/whl_demo.jpg + batch_size: 10 + transforms: + - DecodeImage: + to_np: False + channel_first: False + backend: pil + - ResizeImage: + resize_short: 288 + interpolation: bicubic + backend: pil + - CropImage: + size: 256 + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.0, 0.0, 0.0] + std: [1.0, 1.0, 1.0] + order: '' + - ToCHWImage: + PostProcess: + name: Topk + topk: 5 + class_id_map_file: ppcls/utils/imagenet1k_label_list.txt + +Metric: + Train: + - TopkAcc: + topk: [1, 5] + Eval: + - TopkAcc: + topk: [1, 5] diff --git a/ppcls/configs/ImageNet/MobileViTv2/MobileViTv2_x1_0.yaml b/ppcls/configs/ImageNet/MobileViTv2/MobileViTv2_x1_0.yaml new file mode 100644 index 0000000000000000000000000000000000000000..3e06795c1c6d58b03b829632e3b59b12c5e62208 --- /dev/null +++ b/ppcls/configs/ImageNet/MobileViTv2/MobileViTv2_x1_0.yaml @@ -0,0 +1,173 @@ +# global configs +Global: + checkpoints: null + pretrained_model: null + output_dir: ./output/ + device: gpu + save_interval: 1 + eval_during_train: True + eval_interval: 1 + epochs: 300 + print_batch_step: 10 + use_visualdl: False + # used for static mode and model export + image_shape: [3, 256, 256] + save_inference_dir: ./inference + use_dali: False + +# mixed precision training +AMP: + scale_loss: 65536 + use_dynamic_loss_scaling: True + # O1: mixed fp16 + level: O1 + +# model ema +EMA: + decay: 0.9995 + +# model architecture +Arch: + name: MobileViTv2_x1_0 + class_num: 1000 + +# loss function config for traing/eval process +Loss: + Train: + - CELoss: + weight: 1.0 + epsilon: 0.1 + Eval: + - CELoss: + weight: 1.0 + +Optimizer: + name: AdamW + beta1: 0.9 + beta2: 0.999 + epsilon: 1e-8 + weight_decay: 0.013 + one_dim_param_no_weight_decay: True + lr: + # for 8 cards + name: Cosine + learning_rate: 0.0075 + eta_min: 0.00075 + warmup_epoch: 16 # 20000 iterations + warmup_start_lr: 1e-6 + # by_epoch: True + clip_norm: 10 + +# data loader for train and eval +DataLoader: + Train: + dataset: + name: ImageNetDataset + image_root: ./dataset/ILSVRC2012/ + cls_label_path: ./dataset/ILSVRC2012/train_list.txt + transform_ops: + - DecodeImage: + to_rgb: True + channel_first: False + backend: pil + - RandCropImage: + size: 256 + interpolation: bicubic + backend: pil + use_log_aspect: True + - RandFlipImage: + flip_code: 1 + - RandAugmentV3: + num_layers: 2 + interpolation: bicubic + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.0, 0.0, 0.0] + std: [1.0, 1.0, 1.0] + order: '' + - RandomErasing: + EPSILON: 0.25 + sl: 0.02 + sh: 1.0/3.0 + r1: 0.3 + attempt: 10 + use_log_aspect: True + mode: const + batch_transform_ops: + - OpSampler: + MixupOperator: + alpha: 0.2 + prob: 0.25 + CutmixOperator: + alpha: 1.0 + prob: 0.25 + sampler: + name: DistributedBatchSampler + batch_size: 128 + drop_last: False + shuffle: True + loader: + num_workers: 4 + use_shared_memory: True + Eval: + dataset: + name: ImageNetDataset + image_root: ./dataset/ILSVRC2012/ + cls_label_path: ./dataset/ILSVRC2012/val_list.txt + transform_ops: + - DecodeImage: + to_np: False + channel_first: False + backend: pil + - ResizeImage: + resize_short: 288 + interpolation: bicubic + backend: pil + - CropImage: + size: 256 + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.0, 0.0, 0.0] + std: [1.0, 1.0, 1.0] + order: '' + sampler: + name: DistributedBatchSampler + batch_size: 128 + drop_last: False + shuffle: False + loader: + num_workers: 4 + use_shared_memory: True + +Infer: + infer_imgs: docs/images/inference_deployment/whl_demo.jpg + batch_size: 10 + transforms: + - DecodeImage: + to_np: False + channel_first: False + backend: pil + - ResizeImage: + resize_short: 288 + interpolation: bicubic + backend: pil + - CropImage: + size: 256 + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.0, 0.0, 0.0] + std: [1.0, 1.0, 1.0] + order: '' + - ToCHWImage: + PostProcess: + name: Topk + topk: 5 + class_id_map_file: ppcls/utils/imagenet1k_label_list.txt + +Metric: + Train: + - TopkAcc: + topk: [1, 5] + Eval: + - TopkAcc: + topk: [1, 5] diff --git a/ppcls/configs/ImageNet/MobileViTv2/MobileViTv2_x1_5.yaml b/ppcls/configs/ImageNet/MobileViTv2/MobileViTv2_x1_5.yaml new file mode 100644 index 0000000000000000000000000000000000000000..8071522b80eb60446027a18f0e05e832fa9857c1 --- /dev/null +++ b/ppcls/configs/ImageNet/MobileViTv2/MobileViTv2_x1_5.yaml @@ -0,0 +1,174 @@ +# global configs +Global: + checkpoints: null + pretrained_model: null + output_dir: ./output/ + device: gpu + save_interval: 1 + eval_during_train: True + eval_interval: 1 + epochs: 300 + print_batch_step: 10 + use_visualdl: False + # used for static mode and model export + image_shape: [3, 256, 256] + save_inference_dir: ./inference + use_dali: False + update_freq: 2 # for 4 gpus + +# mixed precision training +AMP: + scale_loss: 65536 + use_dynamic_loss_scaling: True + # O1: mixed fp16 + level: O1 + +# model ema +EMA: + decay: 0.9995 + +# model architecture +Arch: + name: MobileViTv2_x1_5 + class_num: 1000 + +# loss function config for traing/eval process +Loss: + Train: + - CELoss: + weight: 1.0 + epsilon: 0.1 + Eval: + - CELoss: + weight: 1.0 + +Optimizer: + name: AdamW + beta1: 0.9 + beta2: 0.999 + epsilon: 1e-8 + weight_decay: 0.029 + one_dim_param_no_weight_decay: True + lr: + # for 8 cards + name: Cosine + learning_rate: 0.0035 # for total batch size 1024 + eta_min: 0.00035 + warmup_epoch: 16 # 20000 iterations + warmup_start_lr: 1e-6 + # by_epoch: True + clip_norm: 10 + +# data loader for train and eval +DataLoader: + Train: + dataset: + name: ImageNetDataset + image_root: ./dataset/ILSVRC2012/ + cls_label_path: ./dataset/ILSVRC2012/train_list.txt + transform_ops: + - DecodeImage: + to_rgb: True + channel_first: False + backend: pil + - RandCropImage: + size: 256 + interpolation: bicubic + backend: pil + use_log_aspect: True + - RandFlipImage: + flip_code: 1 + - RandAugmentV3: + num_layers: 2 + interpolation: bicubic + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.0, 0.0, 0.0] + std: [1.0, 1.0, 1.0] + order: '' + - RandomErasing: + EPSILON: 0.25 + sl: 0.02 + sh: 1.0/3.0 + r1: 0.3 + attempt: 10 + use_log_aspect: True + mode: const + batch_transform_ops: + - OpSampler: + MixupOperator: + alpha: 0.2 + prob: 0.25 + CutmixOperator: + alpha: 1.0 + prob: 0.25 + sampler: + name: DistributedBatchSampler + batch_size: 128 + drop_last: False + shuffle: True + loader: + num_workers: 4 + use_shared_memory: True + Eval: + dataset: + name: ImageNetDataset + image_root: ./dataset/ILSVRC2012/ + cls_label_path: ./dataset/ILSVRC2012/val_list.txt + transform_ops: + - DecodeImage: + to_np: False + channel_first: False + backend: pil + - ResizeImage: + resize_short: 288 + interpolation: bicubic + backend: pil + - CropImage: + size: 256 + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.0, 0.0, 0.0] + std: [1.0, 1.0, 1.0] + order: '' + sampler: + name: DistributedBatchSampler + batch_size: 128 + drop_last: False + shuffle: False + loader: + num_workers: 4 + use_shared_memory: True + +Infer: + infer_imgs: docs/images/inference_deployment/whl_demo.jpg + batch_size: 10 + transforms: + - DecodeImage: + to_np: False + channel_first: False + backend: pil + - ResizeImage: + resize_short: 288 + interpolation: bicubic + backend: pil + - CropImage: + size: 256 + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.0, 0.0, 0.0] + std: [1.0, 1.0, 1.0] + order: '' + - ToCHWImage: + PostProcess: + name: Topk + topk: 5 + class_id_map_file: ppcls/utils/imagenet1k_label_list.txt + +Metric: + Train: + - TopkAcc: + topk: [1, 5] + Eval: + - TopkAcc: + topk: [1, 5] diff --git a/ppcls/configs/ImageNet/MobileViTv2/MobileViTv2_x2_0.yaml b/ppcls/configs/ImageNet/MobileViTv2/MobileViTv2_x2_0.yaml new file mode 100644 index 0000000000000000000000000000000000000000..4a4975fa5f3c8fcc69b385c240cf334145c5bdeb --- /dev/null +++ b/ppcls/configs/ImageNet/MobileViTv2/MobileViTv2_x2_0.yaml @@ -0,0 +1,173 @@ +# global configs +Global: + checkpoints: null + pretrained_model: null + output_dir: ./output/ + device: gpu + save_interval: 1 + eval_during_train: True + eval_interval: 1 + epochs: 300 + print_batch_step: 10 + use_visualdl: False + # used for static mode and model export + image_shape: [3, 256, 256] + save_inference_dir: ./inference + use_dali: False + +# mixed precision training +AMP: + scale_loss: 65536 + use_dynamic_loss_scaling: True + # O1: mixed fp16 + level: O1 + +# model ema +EMA: + decay: 0.9995 + +# model architecture +Arch: + name: MobileViTv2_x2_0 + class_num: 1000 + +# loss function config for traing/eval process +Loss: + Train: + - CELoss: + weight: 1.0 + epsilon: 0.1 + Eval: + - CELoss: + weight: 1.0 + +Optimizer: + name: AdamW + beta1: 0.9 + beta2: 0.999 + epsilon: 1e-8 + weight_decay: 0.05 + one_dim_param_no_weight_decay: True + lr: + # for 8 cards + name: Cosine + learning_rate: 0.002 + eta_min: 0.0002 + warmup_epoch: 16 # 20000 iterations + warmup_start_lr: 1e-6 + # by_epoch: True + clip_norm: 10 + +# data loader for train and eval +DataLoader: + Train: + dataset: + name: ImageNetDataset + image_root: ./dataset/ILSVRC2012/ + cls_label_path: ./dataset/ILSVRC2012/train_list.txt + transform_ops: + - DecodeImage: + to_rgb: True + channel_first: False + backend: pil + - RandCropImage: + size: 256 + interpolation: bicubic + backend: pil + use_log_aspect: True + - RandFlipImage: + flip_code: 1 + - RandAugmentV3: + num_layers: 2 + interpolation: bicubic + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.0, 0.0, 0.0] + std: [1.0, 1.0, 1.0] + order: '' + - RandomErasing: + EPSILON: 0.25 + sl: 0.02 + sh: 1.0/3.0 + r1: 0.3 + attempt: 10 + use_log_aspect: True + mode: const + batch_transform_ops: + - OpSampler: + MixupOperator: + alpha: 0.2 + prob: 0.25 + CutmixOperator: + alpha: 1.0 + prob: 0.25 + sampler: + name: DistributedBatchSampler + batch_size: 128 + drop_last: False + shuffle: True + loader: + num_workers: 4 + use_shared_memory: True + Eval: + dataset: + name: ImageNetDataset + image_root: ./dataset/ILSVRC2012/ + cls_label_path: ./dataset/ILSVRC2012/val_list.txt + transform_ops: + - DecodeImage: + to_np: False + channel_first: False + backend: pil + - ResizeImage: + resize_short: 288 + interpolation: bicubic + backend: pil + - CropImage: + size: 256 + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.0, 0.0, 0.0] + std: [1.0, 1.0, 1.0] + order: '' + sampler: + name: DistributedBatchSampler + batch_size: 128 + drop_last: False + shuffle: False + loader: + num_workers: 4 + use_shared_memory: True + +Infer: + infer_imgs: docs/images/inference_deployment/whl_demo.jpg + batch_size: 10 + transforms: + - DecodeImage: + to_np: False + channel_first: False + backend: pil + - ResizeImage: + resize_short: 288 + interpolation: bicubic + backend: pil + - CropImage: + size: 256 + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.0, 0.0, 0.0] + std: [1.0, 1.0, 1.0] + order: '' + - ToCHWImage: + PostProcess: + name: Topk + topk: 5 + class_id_map_file: ppcls/utils/imagenet1k_label_list.txt + +Metric: + Train: + - TopkAcc: + topk: [1, 5] + Eval: + - TopkAcc: + topk: [1, 5] diff --git a/ppcls/data/preprocess/__init__.py b/ppcls/data/preprocess/__init__.py index 66234a44bd23a7e4b55791d9183e9ac013f14d50..d994c22cdf886e5f572f5486d01d19119c624ba1 100644 --- a/ppcls/data/preprocess/__init__.py +++ b/ppcls/data/preprocess/__init__.py @@ -16,6 +16,7 @@ from ppcls.data.preprocess.ops.autoaugment import ImageNetPolicy as RawImageNetP from ppcls.data.preprocess.ops.randaugment import RandAugment as RawRandAugment from ppcls.data.preprocess.ops.randaugment import RandomApply from ppcls.data.preprocess.ops.randaugment import RandAugmentV2 as RawRandAugmentV2 +from ppcls.data.preprocess.ops.randaugment import RandAugmentV3 as RawRandAugmentV3 from ppcls.data.preprocess.ops.timm_autoaugment import RawTimmAutoAugment from ppcls.data.preprocess.ops.cutout import Cutout @@ -58,6 +59,7 @@ import numpy as np from PIL import Image import random + def transform(data, ops=[]): """ transform """ for op in ops: @@ -122,6 +124,25 @@ class RandAugmentV2(RawRandAugmentV2): return img +class RandAugmentV3(RawRandAugmentV3): + """ RandAugmentV3 wrapper to auto fit different img types """ + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + def __call__(self, img): + if not isinstance(img, Image.Image): + img = np.ascontiguousarray(img) + img = Image.fromarray(img) + + img = super().__call__(img) + + if isinstance(img, Image.Image): + img = np.asarray(img) + + return img + + class TimmAutoAugment(RawTimmAutoAugment): """ TimmAutoAugment wrapper to auto fit different img tyeps. """ @@ -139,4 +160,4 @@ class TimmAutoAugment(RawTimmAutoAugment): if isinstance(img, Image.Image): img = np.asarray(img) - return img \ No newline at end of file + return img diff --git a/test_tipc/configs/MobileViTv2/MobileViTv2_x0_5_train_infer_python.txt b/test_tipc/configs/MobileViTv2/MobileViTv2_x0_5_train_infer_python.txt new file mode 100644 index 0000000000000000000000000000000000000000..70b91de1dd98a59201026dd25069ac2b527df9bb --- /dev/null +++ b/test_tipc/configs/MobileViTv2/MobileViTv2_x0_5_train_infer_python.txt @@ -0,0 +1,61 @@ +===========================train_params=========================== +model_name:MobileViTv2_x0_5 +python:python3.7 +gpu_list:0|0,1 +-o Global.device:gpu +-o Global.auto_cast:null +-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120 +-o Global.output_dir:./output/ +-o DataLoader.Train.sampler.batch_size:8 +-o Global.pretrained_model:null +train_model_name:latest +train_infer_img_dir:./dataset/ILSVRC2012/val +null:null +## +trainer:norm_train +norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViTv2/MobileViTv2_x0_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2 +pact_train:null +fpgm_train:null +distill_train:null +null:null +null:null +## +===========================eval_params=========================== +eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViTv2/MobileViTv2_x0_5.yaml +null:null +## +===========================infer_params========================== +-o Global.save_inference_dir:./inference +-o Global.pretrained_model: +norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViTv2/MobileViTv2_x0_5.yaml +quant_export:null +fpgm_export:null +distill_export:null +kl_quant:null +export2:null +inference_dir:null +infer_model:../inference/ +infer_export:True +infer_quant:Fasle +inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.resize_short=288 -o PreProcess.transform_ops.1.CropImage.size=256 -o PreProcess.transform_ops.2.NormalizeImage.mean=[0.,0.,0.] -o PreProcess.transform_ops.2.NormalizeImage.std=[1.,1.,1.] +-o Global.use_gpu:True|False +-o Global.enable_mkldnn:False +-o Global.cpu_num_threads:1 +-o Global.batch_size:1 +-o Global.use_tensorrt:False +-o Global.use_fp16:False +-o Global.inference_model_dir:../inference +-o Global.infer_imgs:../dataset/ILSVRC2012/val/ILSVRC2012_val_00000001.JPEG +-o Global.save_log_path:null +-o Global.benchmark:False +null:null +null:null +===========================disable_train_benchmark========================== +batch_size:128 +fp_items:fp32 +epoch:1 +model_type:norm_train +--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile +flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096 +===========================infer_benchmark_params========================== +random_infer_input:[{float32,[3,256,256]}] diff --git a/test_tipc/configs/MobileViTv2/MobileViTv2_x1_0_train_infer_python.txt b/test_tipc/configs/MobileViTv2/MobileViTv2_x1_0_train_infer_python.txt new file mode 100644 index 0000000000000000000000000000000000000000..310aff165a56e8e2e0f7fee8b0c279cc650cb3e6 --- /dev/null +++ b/test_tipc/configs/MobileViTv2/MobileViTv2_x1_0_train_infer_python.txt @@ -0,0 +1,61 @@ +===========================train_params=========================== +model_name:MobileViTv2_x1_0 +python:python3.7 +gpu_list:0|0,1 +-o Global.device:gpu +-o Global.auto_cast:null +-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120 +-o Global.output_dir:./output/ +-o DataLoader.Train.sampler.batch_size:8 +-o Global.pretrained_model:null +train_model_name:latest +train_infer_img_dir:./dataset/ILSVRC2012/val +null:null +## +trainer:norm_train +norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViTv2/MobileViTv2_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2 +pact_train:null +fpgm_train:null +distill_train:null +null:null +null:null +## +===========================eval_params=========================== +eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViTv2/MobileViTv2_x1_0.yaml +null:null +## +===========================infer_params========================== +-o Global.save_inference_dir:./inference +-o Global.pretrained_model: +norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViTv2/MobileViTv2_x1_0.yaml +quant_export:null +fpgm_export:null +distill_export:null +kl_quant:null +export2:null +inference_dir:null +infer_model:../inference/ +infer_export:True +infer_quant:Fasle +inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.resize_short=288 -o PreProcess.transform_ops.1.CropImage.size=256 -o PreProcess.transform_ops.2.NormalizeImage.mean=[0.,0.,0.] -o PreProcess.transform_ops.2.NormalizeImage.std=[1.,1.,1.] +-o Global.use_gpu:True|False +-o Global.enable_mkldnn:False +-o Global.cpu_num_threads:1 +-o Global.batch_size:1 +-o Global.use_tensorrt:False +-o Global.use_fp16:False +-o Global.inference_model_dir:../inference +-o Global.infer_imgs:../dataset/ILSVRC2012/val/ILSVRC2012_val_00000001.JPEG +-o Global.save_log_path:null +-o Global.benchmark:False +null:null +null:null +===========================disable_train_benchmark========================== +batch_size:128 +fp_items:fp32 +epoch:1 +model_type:norm_train +--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile +flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096 +===========================infer_benchmark_params========================== +random_infer_input:[{float32,[3,256,256]}] diff --git a/test_tipc/configs/MobileViTv2/MobileViTv2_x1_5_train_infer_python.txt b/test_tipc/configs/MobileViTv2/MobileViTv2_x1_5_train_infer_python.txt new file mode 100644 index 0000000000000000000000000000000000000000..8b32c7b69f08061c10ab9d526656a9021454164d --- /dev/null +++ b/test_tipc/configs/MobileViTv2/MobileViTv2_x1_5_train_infer_python.txt @@ -0,0 +1,61 @@ +===========================train_params=========================== +model_name:MobileViTv2_x1_5 +python:python3.7 +gpu_list:0|0,1 +-o Global.device:gpu +-o Global.auto_cast:null +-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120 +-o Global.output_dir:./output/ +-o DataLoader.Train.sampler.batch_size:8 +-o Global.pretrained_model:null +train_model_name:latest +train_infer_img_dir:./dataset/ILSVRC2012/val +null:null +## +trainer:norm_train +norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViTv2/MobileViTv2_x1_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2 +pact_train:null +fpgm_train:null +distill_train:null +null:null +null:null +## +===========================eval_params=========================== +eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViTv2/MobileViTv2_x1_5.yaml +null:null +## +===========================infer_params========================== +-o Global.save_inference_dir:./inference +-o Global.pretrained_model: +norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViTv2/MobileViTv2_x1_5.yaml +quant_export:null +fpgm_export:null +distill_export:null +kl_quant:null +export2:null +inference_dir:null +infer_model:../inference/ +infer_export:True +infer_quant:Fasle +inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.resize_short=288 -o PreProcess.transform_ops.1.CropImage.size=256 -o PreProcess.transform_ops.2.NormalizeImage.mean=[0.,0.,0.] -o PreProcess.transform_ops.2.NormalizeImage.std=[1.,1.,1.] +-o Global.use_gpu:True|False +-o Global.enable_mkldnn:False +-o Global.cpu_num_threads:1 +-o Global.batch_size:1 +-o Global.use_tensorrt:False +-o Global.use_fp16:False +-o Global.inference_model_dir:../inference +-o Global.infer_imgs:../dataset/ILSVRC2012/val/ILSVRC2012_val_00000001.JPEG +-o Global.save_log_path:null +-o Global.benchmark:False +null:null +null:null +===========================disable_train_benchmark========================== +batch_size:128 +fp_items:fp32 +epoch:1 +model_type:norm_train +--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile +flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096 +===========================infer_benchmark_params========================== +random_infer_input:[{float32,[3,256,256]}] diff --git a/test_tipc/configs/MobileViTv2/MobileViTv2_x2_0_train_infer_python.txt b/test_tipc/configs/MobileViTv2/MobileViTv2_x2_0_train_infer_python.txt new file mode 100644 index 0000000000000000000000000000000000000000..21f398afe83b4e3e8f5f9519007ab66b71be00a5 --- /dev/null +++ b/test_tipc/configs/MobileViTv2/MobileViTv2_x2_0_train_infer_python.txt @@ -0,0 +1,61 @@ +===========================train_params=========================== +model_name:MobileViTv2_x2_0 +python:python3.7 +gpu_list:0|0,1 +-o Global.device:gpu +-o Global.auto_cast:null +-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120 +-o Global.output_dir:./output/ +-o DataLoader.Train.sampler.batch_size:8 +-o Global.pretrained_model:null +train_model_name:latest +train_infer_img_dir:./dataset/ILSVRC2012/val +null:null +## +trainer:norm_train +norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViTv2/MobileViTv2_x2_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2 +pact_train:null +fpgm_train:null +distill_train:null +null:null +null:null +## +===========================eval_params=========================== +eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViTv2/MobileViTv2_x2_0.yaml +null:null +## +===========================infer_params========================== +-o Global.save_inference_dir:./inference +-o Global.pretrained_model: +norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViTv2/MobileViTv2_x2_0.yaml +quant_export:null +fpgm_export:null +distill_export:null +kl_quant:null +export2:null +inference_dir:null +infer_model:../inference/ +infer_export:True +infer_quant:Fasle +inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.resize_short=288 -o PreProcess.transform_ops.1.CropImage.size=256 -o PreProcess.transform_ops.2.NormalizeImage.mean=[0.,0.,0.] -o PreProcess.transform_ops.2.NormalizeImage.std=[1.,1.,1.] +-o Global.use_gpu:True|False +-o Global.enable_mkldnn:False +-o Global.cpu_num_threads:1 +-o Global.batch_size:1 +-o Global.use_tensorrt:False +-o Global.use_fp16:False +-o Global.inference_model_dir:../inference +-o Global.infer_imgs:../dataset/ILSVRC2012/val/ILSVRC2012_val_00000001.JPEG +-o Global.save_log_path:null +-o Global.benchmark:False +null:null +null:null +===========================disable_train_benchmark========================== +batch_size:128 +fp_items:fp32 +epoch:1 +model_type:norm_train +--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile +flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096 +===========================infer_benchmark_params========================== +random_infer_input:[{float32,[3,256,256]}]