Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
be35b7cc
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
be35b7cc
编写于
6月 28, 2020
作者:
L
littletomatodonkey
提交者:
GitHub
6月 28, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #182 from littletomatodonkey/dyg_model
add dpn, densenet and hrnet dygraph model
上级
3b93ffa0
b857342a
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
1100 addition
and
669 deletion
+1100
-669
ppcls/modeling/architectures/densenet.py
ppcls/modeling/architectures/densenet.py
+231
-142
ppcls/modeling/architectures/dpn.py
ppcls/modeling/architectures/dpn.py
+268
-194
ppcls/modeling/architectures/hrnet.py
ppcls/modeling/architectures/hrnet.py
+601
-333
未找到文件。
ppcls/modeling/architectures/densenet.py
浏览文件 @
be35b7cc
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
import
numpy
as
np
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
math
import
paddle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
__all__
=
[
__all__
=
[
"DenseNet"
,
"DenseNet121"
,
"DenseNet161"
,
"DenseNet169"
,
"DenseNet201"
,
"DenseNet121"
,
"DenseNet161"
,
"DenseNet169"
,
"DenseNet201"
,
"DenseNet264"
"DenseNet264"
]
]
class
DenseNet
():
class
BNACConvLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
layers
=
121
):
def
__init__
(
self
,
self
.
layers
=
layers
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
pad
=
0
,
groups
=
1
,
act
=
"relu"
,
name
=
None
):
super
(
BNACConvLayer
,
self
).
__init__
()
self
.
_batch_norm
=
BatchNorm
(
num_channels
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
name
+
'_bn_scale'
),
bias_attr
=
ParamAttr
(
name
+
'_bn_offset'
),
moving_mean_name
=
name
+
'_bn_mean'
,
moving_variance_name
=
name
+
'_bn_variance'
)
self
.
_conv
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
pad
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
def
forward
(
self
,
input
):
y
=
self
.
_batch_norm
(
input
)
y
=
self
.
_conv
(
y
)
return
y
class
DenseLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
growth_rate
,
bn_size
,
dropout
,
name
=
None
):
super
(
DenseLayer
,
self
).
__init__
()
self
.
dropout
=
dropout
self
.
bn_ac_func1
=
BNACConvLayer
(
num_channels
=
num_channels
,
num_filters
=
bn_size
*
growth_rate
,
filter_size
=
1
,
pad
=
0
,
stride
=
1
,
name
=
name
+
"_x1"
)
self
.
bn_ac_func2
=
BNACConvLayer
(
num_channels
=
bn_size
*
growth_rate
,
num_filters
=
growth_rate
,
filter_size
=
3
,
pad
=
1
,
stride
=
1
,
name
=
name
+
"_x2"
)
if
dropout
:
self
.
dropout_func
=
Dropout
(
p
=
dropout
)
def
forward
(
self
,
input
):
conv
=
self
.
bn_ac_func1
(
input
)
conv
=
self
.
bn_ac_func2
(
conv
)
if
self
.
dropout
:
conv
=
self
.
dropout_func
(
conv
)
conv
=
fluid
.
layers
.
concat
([
input
,
conv
],
axis
=
1
)
return
conv
class
DenseBlock
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_layers
,
bn_size
,
growth_rate
,
dropout
,
name
=
None
):
super
(
DenseBlock
,
self
).
__init__
()
self
.
dropout
=
dropout
self
.
dense_layer_func
=
[]
pre_channel
=
num_channels
for
layer
in
range
(
num_layers
):
self
.
dense_layer_func
.
append
(
self
.
add_sublayer
(
"{}_{}"
.
format
(
name
,
layer
+
1
),
DenseLayer
(
num_channels
=
pre_channel
,
growth_rate
=
growth_rate
,
bn_size
=
bn_size
,
dropout
=
dropout
,
name
=
name
+
'_'
+
str
(
layer
+
1
))))
pre_channel
=
pre_channel
+
growth_rate
def
forward
(
self
,
input
):
conv
=
input
for
func
in
self
.
dense_layer_func
:
conv
=
func
(
conv
)
return
conv
class
TransitionLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_output_features
,
name
=
None
):
super
(
TransitionLayer
,
self
).
__init__
()
self
.
conv_ac_func
=
BNACConvLayer
(
num_channels
=
num_channels
,
num_filters
=
num_output_features
,
filter_size
=
1
,
pad
=
0
,
stride
=
1
,
name
=
name
)
self
.
pool2d_avg
=
Pool2D
(
pool_size
=
2
,
pool_stride
=
2
,
pool_type
=
'avg'
)
def
forward
(
self
,
input
):
y
=
self
.
conv_ac_func
(
input
)
y
=
self
.
pool2d_avg
(
y
)
return
y
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
pad
=
0
,
groups
=
1
,
act
=
"relu"
,
name
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
pad
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
name
+
'_bn_scale'
),
bias_attr
=
ParamAttr
(
name
+
'_bn_offset'
),
moving_mean_name
=
name
+
'_bn_mean'
,
moving_variance_name
=
name
+
'_bn_variance'
)
def
forward
(
self
,
input
):
y
=
self
.
_conv
(
input
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
DenseNet
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
layers
=
60
,
bn_size
=
4
,
dropout
=
0
,
class_dim
=
1000
):
super
(
DenseNet
,
self
).
__init__
()
def
net
(
self
,
input
,
bn_size
=
4
,
dropout
=
0
,
class_dim
=
1000
):
layers
=
self
.
layers
supported_layers
=
[
121
,
161
,
169
,
201
,
264
]
supported_layers
=
[
121
,
161
,
169
,
201
,
264
]
assert
layers
in
supported_layers
,
\
assert
layers
in
supported_layers
,
\
"supported layers are {} but input layer is {}"
.
format
(
supported_layers
,
layers
)
"supported layers are {} but input layer is {}"
.
format
(
supported_layers
,
layers
)
densenet_spec
=
{
densenet_spec
=
{
121
:
(
64
,
32
,
[
6
,
12
,
24
,
16
]),
121
:
(
64
,
32
,
[
6
,
12
,
24
,
16
]),
161
:
(
96
,
48
,
[
6
,
12
,
36
,
24
]),
161
:
(
96
,
48
,
[
6
,
12
,
36
,
24
]),
...
@@ -44,139 +186,86 @@ class DenseNet():
...
@@ -44,139 +186,86 @@ class DenseNet():
201
:
(
64
,
32
,
[
6
,
12
,
48
,
32
]),
201
:
(
64
,
32
,
[
6
,
12
,
48
,
32
]),
264
:
(
64
,
32
,
[
6
,
12
,
64
,
48
])
264
:
(
64
,
32
,
[
6
,
12
,
64
,
48
])
}
}
num_init_features
,
growth_rate
,
block_config
=
densenet_spec
[
layers
]
num_init_features
,
growth_rate
,
block_config
=
densenet_spec
[
layers
]
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
self
.
conv1_func
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
num_init_features
,
num_filters
=
num_init_features
,
filter_size
=
7
,
filter_size
=
7
,
stride
=
2
,
stride
=
2
,
padding
=
3
,
pad
=
3
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
"conv1_weights"
),
bias_attr
=
False
)
conv
=
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
'relu'
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
'conv1_bn_scale'
),
name
=
"conv1"
)
bias_attr
=
ParamAttr
(
name
=
'conv1_bn_offset'
),
moving_mean_name
=
'conv1_bn_mean'
,
self
.
pool2d_max
=
Pool2D
(
moving_variance_name
=
'conv1_bn_variance
'
)
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max
'
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
self
.
block_config
=
block_config
pool_size
=
3
,
pool_stride
=
2
,
self
.
dense_block_func_list
=
[]
pool_padding
=
1
,
self
.
transition_func_list
=
[]
pool_type
=
'max'
)
pre_num_channels
=
num_init_features
num_features
=
num_init_features
num_features
=
num_init_features
for
i
,
num_layers
in
enumerate
(
block_config
):
for
i
,
num_layers
in
enumerate
(
block_config
):
conv
=
self
.
make_dense_block
(
self
.
dense_block_func_list
.
append
(
conv
,
self
.
add_sublayer
(
num_layers
,
"db_conv_{}"
.
format
(
i
+
2
),
bn_size
,
DenseBlock
(
growth_rate
,
num_channels
=
pre_num_channels
,
dropout
,
num_layers
=
num_layers
,
name
=
'conv'
+
str
(
i
+
2
))
bn_size
=
bn_size
,
growth_rate
=
growth_rate
,
dropout
=
dropout
,
name
=
'conv'
+
str
(
i
+
2
))))
num_features
=
num_features
+
num_layers
*
growth_rate
num_features
=
num_features
+
num_layers
*
growth_rate
pre_num_channels
=
num_features
if
i
!=
len
(
block_config
)
-
1
:
if
i
!=
len
(
block_config
)
-
1
:
conv
=
self
.
make_transition
(
self
.
transition_func_list
.
append
(
conv
,
num_features
//
2
,
name
=
'conv'
+
str
(
i
+
2
)
+
'_blk'
)
self
.
add_sublayer
(
"tr_conv{}_blk"
.
format
(
i
+
2
),
TransitionLayer
(
num_channels
=
pre_num_channels
,
num_output_features
=
num_features
//
2
,
name
=
'conv'
+
str
(
i
+
2
)
+
"_blk"
)))
pre_num_channels
=
num_features
//
2
num_features
=
num_features
//
2
num_features
=
num_features
//
2
conv
=
fluid
.
layers
.
batch_norm
(
input
=
conv
,
self
.
batch_norm
=
BatchNorm
(
act
=
'relu'
,
num_features
,
act
=
"relu"
,
param_attr
=
ParamAttr
(
name
=
'conv5_blk_bn_scale'
),
param_attr
=
ParamAttr
(
name
=
'conv5_blk_bn_scale'
),
bias_attr
=
ParamAttr
(
name
=
'conv5_blk_bn_offset'
),
bias_attr
=
ParamAttr
(
name
=
'conv5_blk_bn_offset'
),
moving_mean_name
=
'conv5_blk_bn_mean'
,
moving_mean_name
=
'conv5_blk_bn_mean'
,
moving_variance_name
=
'conv5_blk_bn_variance'
)
moving_variance_name
=
'conv5_blk_bn_variance'
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_type
=
'avg'
,
global_pooling
=
True
)
self
.
pool2d_avg
=
Pool2D
(
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
conv
.
shape
[
1
]
*
1.0
)
out
=
fluid
.
layers
.
fc
(
stdv
=
1.0
/
math
.
sqrt
(
num_features
*
1.0
)
input
=
conv
,
size
=
class_dim
,
self
.
out
=
Linear
(
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
num_features
,
class_dim
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
"fc_weights"
),
name
=
"fc_weights"
),
bias_attr
=
ParamAttr
(
name
=
'fc_offset'
))
bias_attr
=
ParamAttr
(
name
=
"fc_offset"
))
return
out
def
make_transition
(
self
,
input
,
num_output_features
,
name
=
None
):
def
forward
(
self
,
input
):
bn_ac
=
fluid
.
layers
.
batch_norm
(
conv
=
self
.
conv1_func
(
input
)
input
,
conv
=
self
.
pool2d_max
(
conv
)
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
name
+
'_bn_scale'
),
bias_attr
=
ParamAttr
(
name
+
'_bn_offset'
),
moving_mean_name
=
name
+
'_bn_mean'
,
moving_variance_name
=
name
+
'_bn_variance'
)
bn_ac_conv
=
fluid
.
layers
.
conv2d
(
for
i
,
num_layers
in
enumerate
(
self
.
block_config
):
input
=
bn_ac
,
conv
=
self
.
dense_block_func_list
[
i
](
conv
)
num_filters
=
num_output_features
,
if
i
!=
len
(
self
.
block_config
)
-
1
:
filter_size
=
1
,
conv
=
self
.
transition_func_list
[
i
](
conv
)
stride
=
1
,
act
=
None
,
bias_attr
=
False
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
))
pool
=
fluid
.
layers
.
pool2d
(
input
=
bn_ac_conv
,
pool_size
=
2
,
pool_stride
=
2
,
pool_type
=
'avg'
)
return
pool
def
make_dense_block
(
self
,
input
,
num_layers
,
bn_size
,
growth_rate
,
dropout
,
name
=
None
):
conv
=
input
for
layer
in
range
(
num_layers
):
conv
=
self
.
make_dense_layer
(
conv
,
growth_rate
,
bn_size
,
dropout
,
name
=
name
+
'_'
+
str
(
layer
+
1
))
return
conv
def
make_dense_layer
(
self
,
input
,
growth_rate
,
bn_size
,
dropout
,
conv
=
self
.
batch_norm
(
conv
)
name
=
None
):
y
=
self
.
pool2d_avg
(
conv
)
bn_ac
=
fluid
.
layers
.
batch_norm
(
y
=
fluid
.
layers
.
reshape
(
y
,
shape
=
[
0
,
-
1
])
input
,
y
=
self
.
out
(
y
)
act
=
'relu'
,
return
y
param_attr
=
ParamAttr
(
name
=
name
+
'_x1_bn_scale'
),
bias_attr
=
ParamAttr
(
name
+
'_x1_bn_offset'
),
moving_mean_name
=
name
+
'_x1_bn_mean'
,
moving_variance_name
=
name
+
'_x1_bn_variance'
)
bn_ac_conv
=
fluid
.
layers
.
conv2d
(
input
=
bn_ac
,
num_filters
=
bn_size
*
growth_rate
,
filter_size
=
1
,
stride
=
1
,
act
=
None
,
bias_attr
=
False
,
param_attr
=
ParamAttr
(
name
=
name
+
"_x1_weights"
))
bn_ac
=
fluid
.
layers
.
batch_norm
(
bn_ac_conv
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
name
+
'_x2_bn_scale'
),
bias_attr
=
ParamAttr
(
name
+
'_x2_bn_offset'
),
moving_mean_name
=
name
+
'_x2_bn_mean'
,
moving_variance_name
=
name
+
'_x2_bn_variance'
)
bn_ac_conv
=
fluid
.
layers
.
conv2d
(
input
=
bn_ac
,
num_filters
=
growth_rate
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
act
=
None
,
bias_attr
=
False
,
param_attr
=
ParamAttr
(
name
=
name
+
"_x2_weights"
))
if
dropout
:
bn_ac_conv
=
fluid
.
layers
.
dropout
(
x
=
bn_ac_conv
,
dropout_prob
=
dropout
)
bn_ac_conv
=
fluid
.
layers
.
concat
([
input
,
bn_ac_conv
],
axis
=
1
)
return
bn_ac_conv
def
DenseNet121
():
def
DenseNet121
():
...
...
ppcls/modeling/architectures/dpn.py
浏览文件 @
be35b7cc
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
numpy
as
np
import
numpy
as
np
import
time
import
sys
import
sys
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
import
math
__all__
=
[
"DPN"
,
"DPN68"
,
"DPN92"
,
"DPN98"
,
"DPN107"
,
"DPN131"
,
]
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
pad
=
0
,
groups
=
1
,
act
=
"relu"
,
name
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
pad
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
name
+
'_bn_scale'
),
bias_attr
=
ParamAttr
(
name
+
'_bn_offset'
),
moving_mean_name
=
name
+
'_bn_mean'
,
moving_variance_name
=
name
+
'_bn_variance'
)
def
forward
(
self
,
input
):
y
=
self
.
_conv
(
input
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
BNACConvLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
pad
=
0
,
groups
=
1
,
act
=
"relu"
,
name
=
None
):
super
(
BNACConvLayer
,
self
).
__init__
()
self
.
num_channels
=
num_channels
self
.
name
=
name
self
.
_batch_norm
=
BatchNorm
(
num_channels
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
name
+
'_bn_scale'
),
bias_attr
=
ParamAttr
(
name
+
'_bn_offset'
),
moving_mean_name
=
name
+
'_bn_mean'
,
moving_variance_name
=
name
+
'_bn_variance'
)
self
.
_conv
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
pad
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
def
forward
(
self
,
input
):
y
=
self
.
_batch_norm
(
input
)
y
=
self
.
_conv
(
y
)
return
y
class
DualPathFactory
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_1x1_a
,
num_3x3_b
,
num_1x1_c
,
inc
,
G
,
_type
=
'normal'
,
name
=
None
):
super
(
DualPathFactory
,
self
).
__init__
()
self
.
num_1x1_c
=
num_1x1_c
self
.
inc
=
inc
self
.
name
=
name
kw
=
3
kh
=
3
pw
=
(
kw
-
1
)
//
2
ph
=
(
kh
-
1
)
//
2
# type
if
_type
==
'proj'
:
key_stride
=
1
self
.
has_proj
=
True
elif
_type
==
'down'
:
key_stride
=
2
self
.
has_proj
=
True
elif
_type
==
'normal'
:
key_stride
=
1
self
.
has_proj
=
False
else
:
print
(
"not implemented now!!!"
)
sys
.
exit
(
1
)
data_in_ch
=
sum
(
num_channels
)
if
isinstance
(
num_channels
,
list
)
else
num_channels
if
self
.
has_proj
:
self
.
c1x1_w_func
=
BNACConvLayer
(
num_channels
=
data_in_ch
,
num_filters
=
num_1x1_c
+
2
*
inc
,
filter_size
=
(
1
,
1
),
pad
=
(
0
,
0
),
stride
=
(
key_stride
,
key_stride
),
name
=
name
+
"_match"
)
self
.
c1x1_a_func
=
BNACConvLayer
(
num_channels
=
data_in_ch
,
num_filters
=
num_1x1_a
,
filter_size
=
(
1
,
1
),
pad
=
(
0
,
0
),
name
=
name
+
"_conv1"
)
self
.
c3x3_b_func
=
BNACConvLayer
(
num_channels
=
num_1x1_a
,
num_filters
=
num_3x3_b
,
filter_size
=
(
kw
,
kh
),
pad
=
(
pw
,
ph
),
stride
=
(
key_stride
,
key_stride
),
groups
=
G
,
name
=
name
+
"_conv2"
)
self
.
c1x1_c_func
=
BNACConvLayer
(
num_channels
=
num_3x3_b
,
num_filters
=
num_1x1_c
+
inc
,
filter_size
=
(
1
,
1
),
pad
=
(
0
,
0
),
name
=
name
+
"_conv3"
)
def
forward
(
self
,
input
):
# PROJ
if
isinstance
(
input
,
list
):
data_in
=
fluid
.
layers
.
concat
([
input
[
0
],
input
[
1
]],
axis
=
1
)
else
:
data_in
=
input
if
self
.
has_proj
:
c1x1_w
=
self
.
c1x1_w_func
(
data_in
)
data_o1
,
data_o2
=
fluid
.
layers
.
split
(
c1x1_w
,
num_or_sections
=
[
self
.
num_1x1_c
,
2
*
self
.
inc
],
dim
=
1
)
else
:
data_o1
=
input
[
0
]
data_o2
=
input
[
1
]
c1x1_a
=
self
.
c1x1_a_func
(
data_in
)
c3x3_b
=
self
.
c3x3_b_func
(
c1x1_a
)
c1x1_c
=
self
.
c1x1_c_func
(
c3x3_b
)
c1x1_c1
,
c1x1_c2
=
fluid
.
layers
.
split
(
c1x1_c
,
num_or_sections
=
[
self
.
num_1x1_c
,
self
.
inc
],
dim
=
1
)
# OUTPUTS
summ
=
fluid
.
layers
.
elementwise_add
(
x
=
data_o1
,
y
=
c1x1_c1
)
dense
=
fluid
.
layers
.
concat
([
data_o2
,
c1x1_c2
],
axis
=
1
)
# tensor, channels
return
[
summ
,
dense
]
__all__
=
[
"DPN"
,
"DPN68"
,
"DPN92"
,
"DPN98"
,
"DPN107"
,
"DPN131"
]
class
DPN
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
layers
=
60
,
class_dim
=
1000
):
super
(
DPN
,
self
).
__init__
()
class
DPN
(
object
):
self
.
_class_dim
=
class_dim
def
__init__
(
self
,
layers
=
68
):
self
.
layers
=
layers
def
net
(
self
,
input
,
class_dim
=
1000
):
args
=
self
.
get_net_args
(
layers
)
# get network args
args
=
self
.
get_net_args
(
self
.
layers
)
bws
=
args
[
'bw'
]
bws
=
args
[
'bw'
]
inc_sec
=
args
[
'inc_sec'
]
inc_sec
=
args
[
'inc_sec'
]
rs
=
args
[
'r'
]
rs
=
args
[
'r'
]
...
@@ -45,39 +209,23 @@ class DPN(object):
...
@@ -45,39 +209,23 @@ class DPN(object):
init_filter_size
=
args
[
'init_filter_size'
]
init_filter_size
=
args
[
'init_filter_size'
]
init_padding
=
args
[
'init_padding'
]
init_padding
=
args
[
'init_padding'
]
## define Dual Path Network
self
.
k_sec
=
k_sec
# conv1
self
.
conv1_x_1_func
=
ConvBNLayer
(
conv1_x_1
=
fluid
.
layers
.
conv2d
(
num_channels
=
3
,
input
=
input
,
num_filters
=
init_num_filter
,
num_filters
=
init_num_filter
,
filter_size
=
init_filter_size
,
filter_size
=
3
,
stride
=
2
,
stride
=
2
,
padding
=
init_padding
,
pad
=
1
,
groups
=
1
,
act
=
None
,
bias_attr
=
False
,
name
=
"conv1"
,
param_attr
=
ParamAttr
(
name
=
"conv1_weights"
),
)
conv1_x_1
=
fluid
.
layers
.
batch_norm
(
input
=
conv1_x_1
,
act
=
'relu'
,
act
=
'relu'
,
is_test
=
False
,
name
=
"conv1"
)
name
=
"conv1_bn"
,
param_attr
=
ParamAttr
(
name
=
'conv1_bn_scale'
),
self
.
pool2d_max
=
Pool2D
(
bias_attr
=
ParamAttr
(
'conv1_bn_offset'
),
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
moving_mean_name
=
'conv1_bn_mean'
,
moving_variance_name
=
'conv1_bn_variance'
,
)
convX_x_x
=
fluid
.
layers
.
pool2d
(
input
=
conv1_x_1
,
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
,
name
=
"pool1"
)
num_channel_dpn
=
init_num_filter
self
.
dpn_func_list
=
[]
#conv2 - conv5
#conv2 - conv5
match_list
,
num
=
[],
0
match_list
,
num
=
[],
0
for
gc
in
range
(
4
):
for
gc
in
range
(
4
):
...
@@ -93,43 +241,82 @@ class DPN(object):
...
@@ -93,43 +241,82 @@ class DPN(object):
_type2
=
'normal'
_type2
=
'normal'
match
=
match
+
k_sec
[
gc
-
1
]
match
=
match
+
k_sec
[
gc
-
1
]
match_list
.
append
(
match
)
match_list
.
append
(
match
)
self
.
dpn_func_list
.
append
(
self
.
add_sublayer
(
"dpn{}"
.
format
(
match
),
DualPathFactory
(
num_channels
=
num_channel_dpn
,
num_1x1_a
=
R
,
num_3x3_b
=
R
,
num_1x1_c
=
bw
,
inc
=
inc
,
G
=
G
,
_type
=
_type1
,
name
=
"dpn"
+
str
(
match
))))
num_channel_dpn
=
[
bw
,
3
*
inc
]
convX_x_x
=
self
.
dual_path_factory
(
convX_x_x
,
R
,
R
,
bw
,
inc
,
G
,
_type1
,
name
=
"dpn"
+
str
(
match
))
for
i_ly
in
range
(
2
,
k_sec
[
gc
]
+
1
):
for
i_ly
in
range
(
2
,
k_sec
[
gc
]
+
1
):
num
+=
1
num
+=
1
if
num
in
match_list
:
if
num
in
match_list
:
num
+=
1
num
+=
1
convX_x_x
=
self
.
dual_path_factory
(
self
.
dpn_func_list
.
append
(
convX_x_x
,
R
,
R
,
bw
,
inc
,
G
,
_type2
,
name
=
"dpn"
+
str
(
num
))
self
.
add_sublayer
(
"dpn{}"
.
format
(
num
),
conv5_x_x
=
fluid
.
layers
.
concat
(
convX_x_x
,
axis
=
1
)
DualPathFactory
(
conv5_x_x
=
fluid
.
layers
.
batch_norm
(
num_channels
=
num_channel_dpn
,
input
=
conv5_x_x
,
num_1x1_a
=
R
,
act
=
'relu'
,
num_3x3_b
=
R
,
is_test
=
False
,
num_1x1_c
=
bw
,
name
=
"final_concat_bn"
,
inc
=
inc
,
G
=
G
,
_type
=
_type2
,
name
=
"dpn"
+
str
(
num
))))
num_channel_dpn
=
[
num_channel_dpn
[
0
],
num_channel_dpn
[
1
]
+
inc
]
out_channel
=
sum
(
num_channel_dpn
)
self
.
conv5_x_x_bn
=
BatchNorm
(
num_channels
=
sum
(
num_channel_dpn
),
act
=
"relu"
,
param_attr
=
ParamAttr
(
name
=
'final_concat_bn_scale'
),
param_attr
=
ParamAttr
(
name
=
'final_concat_bn_scale'
),
bias_attr
=
ParamAttr
(
'final_concat_bn_offset'
),
bias_attr
=
ParamAttr
(
'final_concat_bn_offset'
),
moving_mean_name
=
'final_concat_bn_mean'
,
moving_mean_name
=
'final_concat_bn_mean'
,
moving_variance_name
=
'final_concat_bn_variance'
,
)
moving_variance_name
=
'final_concat_bn_variance'
)
pool5
=
fluid
.
layers
.
pool2d
(
input
=
conv5_x_x
,
self
.
pool2d_avg
=
Pool2D
(
pool_type
=
'avg'
,
global_pooling
=
True
)
pool_size
=
7
,
pool_stride
=
1
,
pool_padding
=
0
,
pool_type
=
'avg'
,
)
stdv
=
0.01
stdv
=
0.01
fc6
=
fluid
.
layers
.
fc
(
input
=
pool5
,
self
.
out
=
Linear
(
size
=
class_dim
,
out_channel
,
class_dim
,
param_attr
=
ParamAttr
(
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
'fc_weights'
),
name
=
"fc_weights"
),
bias_attr
=
ParamAttr
(
name
=
'fc_offset'
))
bias_attr
=
ParamAttr
(
name
=
"fc_offset"
))
def
forward
(
self
,
input
):
conv1_x_1
=
self
.
conv1_x_1_func
(
input
)
convX_x_x
=
self
.
pool2d_max
(
conv1_x_1
)
dpn_idx
=
0
for
gc
in
range
(
4
):
convX_x_x
=
self
.
dpn_func_list
[
dpn_idx
](
convX_x_x
)
dpn_idx
+=
1
for
i_ly
in
range
(
2
,
self
.
k_sec
[
gc
]
+
1
):
convX_x_x
=
self
.
dpn_func_list
[
dpn_idx
](
convX_x_x
)
dpn_idx
+=
1
conv5_x_x
=
fluid
.
layers
.
concat
(
convX_x_x
,
axis
=
1
)
conv5_x_x
=
self
.
conv5_x_x_bn
(
conv5_x_x
)
return
fc6
y
=
self
.
pool2d_avg
(
conv5_x_x
)
y
=
fluid
.
layers
.
reshape
(
y
,
shape
=
[
0
,
-
1
])
y
=
self
.
out
(
y
)
return
y
def
get_net_args
(
self
,
layers
):
def
get_net_args
(
self
,
layers
):
if
layers
==
68
:
if
layers
==
68
:
...
@@ -198,119 +385,6 @@ class DPN(object):
...
@@ -198,119 +385,6 @@ class DPN(object):
return
net_arg
return
net_arg
def
dual_path_factory
(
self
,
data
,
num_1x1_a
,
num_3x3_b
,
num_1x1_c
,
inc
,
G
,
_type
=
'normal'
,
name
=
None
):
kw
=
3
kh
=
3
pw
=
(
kw
-
1
)
//
2
ph
=
(
kh
-
1
)
//
2
# type
if
_type
is
'proj'
:
key_stride
=
1
has_proj
=
True
if
_type
is
'down'
:
key_stride
=
2
has_proj
=
True
if
_type
is
'normal'
:
key_stride
=
1
has_proj
=
False
# PROJ
if
type
(
data
)
is
list
:
data_in
=
fluid
.
layers
.
concat
([
data
[
0
],
data
[
1
]],
axis
=
1
)
else
:
data_in
=
data
if
has_proj
:
c1x1_w
=
self
.
bn_ac_conv
(
data
=
data_in
,
num_filter
=
(
num_1x1_c
+
2
*
inc
),
kernel
=
(
1
,
1
),
pad
=
(
0
,
0
),
stride
=
(
key_stride
,
key_stride
),
name
=
name
+
"_match"
)
data_o1
,
data_o2
=
fluid
.
layers
.
split
(
c1x1_w
,
num_or_sections
=
[
num_1x1_c
,
2
*
inc
],
dim
=
1
,
name
=
name
+
"_match_conv_Slice"
)
else
:
data_o1
=
data
[
0
]
data_o2
=
data
[
1
]
# MAIN
c1x1_a
=
self
.
bn_ac_conv
(
data
=
data_in
,
num_filter
=
num_1x1_a
,
kernel
=
(
1
,
1
),
pad
=
(
0
,
0
),
name
=
name
+
"_conv1"
)
c3x3_b
=
self
.
bn_ac_conv
(
data
=
c1x1_a
,
num_filter
=
num_3x3_b
,
kernel
=
(
kw
,
kh
),
pad
=
(
pw
,
ph
),
stride
=
(
key_stride
,
key_stride
),
num_group
=
G
,
name
=
name
+
"_conv2"
)
c1x1_c
=
self
.
bn_ac_conv
(
data
=
c3x3_b
,
num_filter
=
(
num_1x1_c
+
inc
),
kernel
=
(
1
,
1
),
pad
=
(
0
,
0
),
name
=
name
+
"_conv3"
)
c1x1_c1
,
c1x1_c2
=
fluid
.
layers
.
split
(
c1x1_c
,
num_or_sections
=
[
num_1x1_c
,
inc
],
dim
=
1
,
name
=
name
+
"_conv3_Slice"
)
# OUTPUTS
summ
=
fluid
.
layers
.
elementwise_add
(
x
=
data_o1
,
y
=
c1x1_c1
,
name
=
name
+
"_elewise"
)
dense
=
fluid
.
layers
.
concat
(
[
data_o2
,
c1x1_c2
],
axis
=
1
,
name
=
name
+
"_concat"
)
return
[
summ
,
dense
]
def
bn_ac_conv
(
self
,
data
,
num_filter
,
kernel
,
pad
,
stride
=
(
1
,
1
),
num_group
=
1
,
name
=
None
):
bn_ac
=
fluid
.
layers
.
batch_norm
(
input
=
data
,
act
=
'relu'
,
is_test
=
False
,
name
=
name
+
'.output.1'
,
param_attr
=
ParamAttr
(
name
=
name
+
'_bn_scale'
),
bias_attr
=
ParamAttr
(
name
+
'_bn_offset'
),
moving_mean_name
=
name
+
'_bn_mean'
,
moving_variance_name
=
name
+
'_bn_variance'
,
)
bn_ac_conv
=
fluid
.
layers
.
conv2d
(
input
=
bn_ac
,
num_filters
=
num_filter
,
filter_size
=
kernel
,
stride
=
stride
,
padding
=
pad
,
groups
=
num_group
,
act
=
None
,
bias_attr
=
False
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
))
return
bn_ac_conv
def
DPN68
():
def
DPN68
():
model
=
DPN
(
layers
=
68
)
model
=
DPN
(
layers
=
68
)
...
...
ppcls/modeling/architectures/hrnet.py
浏览文件 @
be35b7cc
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
import
numpy
as
np
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
math
import
paddle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid.initializer
import
MSRA
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
import
math
__all__
=
[
__all__
=
[
"HRNet"
,
"HRNet_W18_C"
,
"HRNet_W30_C"
,
"HRNet_W32_C"
,
"HRNet_W40_C"
,
"HRNet_W18_C"
,
"HRNet_W44_C"
,
"HRNet_W48_C"
,
"HRNet_W60_C"
,
"HRNet_W64_C"
,
"HRNet_W30_C"
,
"SE_HRNet_W18_C"
,
"SE_HRNet_W30_C"
,
"SE_HRNet_W32_C"
,
"SE_HRNet_W40_C"
,
"HRNet_W32_C"
,
"SE_HRNet_W44_C"
,
"SE_HRNet_W48_C"
,
"SE_HRNet_W60_C"
,
"SE_HRNet_W64_C"
"HRNet_W40_C"
,
"HRNet_W44_C"
,
"HRNet_W48_C"
,
"HRNet_W60_C"
,
"HRNet_W64_C"
,
"SE_HRNet_W18_C"
,
"SE_HRNet_W30_C"
,
"SE_HRNet_W32_C"
,
"SE_HRNet_W40_C"
,
"SE_HRNet_W44_C"
,
"SE_HRNet_W48_C"
,
"SE_HRNet_W60_C"
,
"SE_HRNet_W64_C"
,
]
]
class
HRNet
():
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
width
=
18
,
has_se
=
False
):
def
__init__
(
self
,
self
.
width
=
width
num_channels
,
self
.
has_se
=
has_se
num_filters
,
self
.
channels
=
{
filter_size
,
18
:
[[
18
,
36
],
[
18
,
36
,
72
],
[
18
,
36
,
72
,
144
]],
stride
=
1
,
30
:
[[
30
,
60
],
[
30
,
60
,
120
],
[
30
,
60
,
120
,
240
]],
groups
=
1
,
32
:
[[
32
,
64
],
[
32
,
64
,
128
],
[
32
,
64
,
128
,
256
]],
act
=
"relu"
,
40
:
[[
40
,
80
],
[
40
,
80
,
160
],
[
40
,
80
,
160
,
320
]],
name
=
None
):
44
:
[[
44
,
88
],
[
44
,
88
,
176
],
[
44
,
88
,
176
,
352
]],
super
(
ConvBNLayer
,
self
).
__init__
()
48
:
[[
48
,
96
],
[
48
,
96
,
192
],
[
48
,
96
,
192
,
384
]],
60
:
[[
60
,
120
],
[
60
,
120
,
240
],
[
60
,
120
,
240
,
480
]],
64
:
[[
64
,
128
],
[
64
,
128
,
256
],
[
64
,
128
,
256
,
512
]]
}
def
net
(
self
,
input
,
class_dim
=
1000
):
self
.
_conv
=
Conv2D
(
width
=
self
.
width
num_channels
=
num_channels
,
channels_2
,
channels_3
,
channels_4
=
self
.
channels
[
width
]
num_filters
=
num_filters
,
num_modules_2
,
num_modules_3
,
num_modules_4
=
1
,
4
,
3
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
bn_name
=
name
+
'_bn'
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
x
=
self
.
conv_bn_layer
(
def
forward
(
self
,
input
):
input
=
input
,
y
=
self
.
_conv
(
input
)
filter_size
=
3
,
y
=
self
.
_batch_norm
(
y
)
num_filters
=
64
,
return
y
stride
=
2
,
if_act
=
True
,
name
=
'layer1_1'
)
class
Layer1
(
fluid
.
dygraph
.
Layer
):
x
=
self
.
conv_bn_layer
(
def
__init__
(
self
,
num_channels
,
has_se
=
False
,
name
=
None
):
input
=
x
,
super
(
Layer1
,
self
).
__init__
()
filter_size
=
3
,
num_filters
=
64
,
self
.
bottleneck_block_list
=
[]
stride
=
2
,
if_act
=
True
,
name
=
'layer1_2'
)
la1
=
self
.
layer1
(
x
,
name
=
'layer2'
)
tr1
=
self
.
transition_layer
([
la1
],
[
256
],
channels_2
,
name
=
'tr1'
)
st2
=
self
.
stage
(
tr1
,
num_modules_2
,
channels_2
,
name
=
'st2'
)
tr2
=
self
.
transition_layer
(
st2
,
channels_2
,
channels_3
,
name
=
'tr2'
)
st3
=
self
.
stage
(
tr2
,
num_modules_3
,
channels_3
,
name
=
'st3'
)
tr3
=
self
.
transition_layer
(
st3
,
channels_3
,
channels_4
,
name
=
'tr3'
)
st4
=
self
.
stage
(
tr3
,
num_modules_4
,
channels_4
,
name
=
'st4'
)
#classification
last_cls
=
self
.
last_cls_out
(
x
=
st4
,
name
=
'cls_head'
)
y
=
last_cls
[
0
]
last_num_filters
=
[
256
,
512
,
1024
]
for
i
in
range
(
3
):
y
=
fluid
.
layers
.
elementwise_add
(
last_cls
[
i
+
1
],
self
.
conv_bn_layer
(
input
=
y
,
filter_size
=
3
,
num_filters
=
last_num_filters
[
i
],
stride
=
2
,
name
=
'cls_head_add'
+
str
(
i
+
1
)))
y
=
self
.
conv_bn_layer
(
input
=
y
,
filter_size
=
1
,
num_filters
=
2048
,
stride
=
1
,
name
=
'cls_head_last_conv'
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
y
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
out
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
class_dim
,
param_attr
=
ParamAttr
(
name
=
'fc_weights'
,
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)),
bias_attr
=
ParamAttr
(
name
=
'fc_offset'
))
return
out
def
layer1
(
self
,
input
,
name
=
None
):
conv
=
input
for
i
in
range
(
4
):
for
i
in
range
(
4
):
conv
=
self
.
bottleneck_block
(
bottleneck_block
=
self
.
add_sublayer
(
conv
,
"bb_{}_{}"
.
format
(
name
,
i
+
1
),
num_filters
=
64
,
BottleneckBlock
(
downsample
=
True
if
i
==
0
else
False
,
num_channels
=
num_channels
if
i
==
0
else
256
,
name
=
name
+
'_'
+
str
(
i
+
1
))
num_filters
=
64
,
has_se
=
has_se
,
stride
=
1
,
downsample
=
True
if
i
==
0
else
False
,
name
=
name
+
'_'
+
str
(
i
+
1
)))
self
.
bottleneck_block_list
.
append
(
bottleneck_block
)
def
forward
(
self
,
input
):
conv
=
input
for
block_func
in
self
.
bottleneck_block_list
:
conv
=
block_func
(
conv
)
return
conv
return
conv
def
transition_layer
(
self
,
x
,
in_channels
,
out_channels
,
name
=
None
):
class
TransitionLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels
,
name
=
None
):
super
(
TransitionLayer
,
self
).
__init__
()
num_in
=
len
(
in_channels
)
num_in
=
len
(
in_channels
)
num_out
=
len
(
out_channels
)
num_out
=
len
(
out_channels
)
out
=
[]
out
=
[]
self
.
conv_bn_func_list
=
[]
for
i
in
range
(
num_out
):
for
i
in
range
(
num_out
):
residual
=
None
if
i
<
num_in
:
if
i
<
num_in
:
if
in_channels
[
i
]
!=
out_channels
[
i
]:
if
in_channels
[
i
]
!=
out_channels
[
i
]:
residual
=
self
.
conv_bn_layer
(
residual
=
self
.
add_sublayer
(
x
[
i
],
"transition_{}_layer_{}"
.
format
(
name
,
i
+
1
),
filter_size
=
3
,
ConvBNLayer
(
num_channels
=
in_channels
[
i
],
num_filters
=
out_channels
[
i
],
filter_size
=
3
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)))
else
:
residual
=
self
.
add_sublayer
(
"transition_{}_layer_{}"
.
format
(
name
,
i
+
1
),
ConvBNLayer
(
num_channels
=
in_channels
[
-
1
],
num_filters
=
out_channels
[
i
],
num_filters
=
out_channels
[
i
],
name
=
name
+
'_layer_'
+
str
(
i
+
1
))
filter_size
=
3
,
out
.
append
(
residual
)
stride
=
2
,
else
:
name
=
name
+
'_layer_'
+
str
(
i
+
1
)))
out
.
append
(
x
[
i
])
self
.
conv_bn_func_list
.
append
(
residual
)
def
forward
(
self
,
input
):
outs
=
[]
for
idx
,
conv_bn_func
in
enumerate
(
self
.
conv_bn_func_list
):
if
conv_bn_func
is
None
:
outs
.
append
(
input
[
idx
])
else
:
else
:
residual
=
self
.
conv_bn_layer
(
if
idx
<
len
(
input
):
x
[
-
1
],
outs
.
append
(
conv_bn_func
(
input
[
idx
]))
filter_size
=
3
,
else
:
num_filters
=
out_channels
[
i
],
outs
.
append
(
conv_bn_func
(
input
[
-
1
]))
stride
=
2
,
return
outs
name
=
name
+
'_layer_'
+
str
(
i
+
1
))
out
.
append
(
residual
)
return
out
def
branches
(
self
,
x
,
block_num
,
channels
,
name
=
None
):
out
=
[]
for
i
in
range
(
len
(
channels
)):
residual
=
x
[
i
]
for
j
in
range
(
block_num
):
residual
=
self
.
basic_block
(
residual
,
channels
[
i
],
name
=
name
+
'_branch_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
))
out
.
append
(
residual
)
return
out
def
fuse_layers
(
self
,
x
,
channels
,
multi_scale_output
=
True
,
name
=
None
):
class
Branches
(
fluid
.
dygraph
.
Layer
):
out
=
[]
def
__init__
(
self
,
for
i
in
range
(
len
(
channels
)
if
multi_scale_output
else
1
):
block_num
,
residual
=
x
[
i
]
in_channels
,
for
j
in
range
(
len
(
channels
)):
out_channels
,
if
j
>
i
:
has_se
=
False
,
y
=
self
.
conv_bn_layer
(
name
=
None
):
x
[
j
],
super
(
Branches
,
self
).
__init__
()
filter_size
=
1
,
num_filters
=
channels
[
i
],
if_act
=
False
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
))
y
=
fluid
.
layers
.
resize_nearest
(
input
=
y
,
scale
=
2
**
(
j
-
i
))
residual
=
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
y
,
act
=
None
)
elif
j
<
i
:
y
=
x
[
j
]
for
k
in
range
(
i
-
j
):
if
k
==
i
-
j
-
1
:
y
=
self
.
conv_bn_layer
(
y
,
filter_size
=
3
,
num_filters
=
channels
[
i
],
stride
=
2
,
if_act
=
False
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
)
+
'_'
+
str
(
k
+
1
))
else
:
y
=
self
.
conv_bn_layer
(
y
,
filter_size
=
3
,
num_filters
=
channels
[
j
],
stride
=
2
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
)
+
'_'
+
str
(
k
+
1
))
residual
=
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
y
,
act
=
None
)
residual
=
fluid
.
layers
.
relu
(
residual
)
self
.
basic_block_list
=
[]
out
.
append
(
residual
)
return
out
def
high_resolution_module
(
self
,
for
i
in
range
(
len
(
out_channels
)):
x
,
self
.
basic_block_list
.
append
([])
channels
,
for
j
in
range
(
block_num
):
multi_scale_output
=
True
,
in_ch
=
in_channels
[
i
]
if
j
==
0
else
out_channels
[
i
]
name
=
None
):
basic_block_func
=
self
.
add_sublayer
(
residual
=
self
.
branches
(
x
,
4
,
channels
,
name
=
name
)
"bb_{}_branch_layer_{}_{}"
.
format
(
name
,
i
+
1
,
j
+
1
),
out
=
self
.
fuse_layers
(
BasicBlock
(
residual
,
num_channels
=
in_ch
,
channels
,
num_filters
=
out_channels
[
i
],
multi_scale_output
=
multi_scale_output
,
has_se
=
has_se
,
name
=
name
)
name
=
name
+
'_branch_layer_'
+
str
(
i
+
1
)
+
'_'
+
return
out
str
(
j
+
1
)))
self
.
basic_block_list
[
i
].
append
(
basic_block_func
)
def
forward
(
self
,
inputs
):
outs
=
[]
for
idx
,
input
in
enumerate
(
inputs
):
conv
=
input
for
basic_block_func
in
self
.
basic_block_list
[
idx
]:
conv
=
basic_block_func
(
conv
)
outs
.
append
(
conv
)
return
outs
class
BottleneckBlock
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
has_se
,
stride
=
1
,
downsample
=
False
,
name
=
None
):
super
(
BottleneckBlock
,
self
).
__init__
()
def
stage
(
self
,
self
.
has_se
=
has_se
x
,
self
.
downsample
=
downsample
num_modules
,
channels
,
multi_scale_output
=
True
,
name
=
None
):
out
=
x
for
i
in
range
(
num_modules
):
if
i
==
num_modules
-
1
and
multi_scale_output
==
False
:
out
=
self
.
high_resolution_module
(
out
,
channels
,
multi_scale_output
=
False
,
name
=
name
+
'_'
+
str
(
i
+
1
))
else
:
out
=
self
.
high_resolution_module
(
out
,
channels
,
name
=
name
+
'_'
+
str
(
i
+
1
))
return
out
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
"relu"
,
name
=
name
+
"_conv1"
,
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
"relu"
,
name
=
name
+
"_conv2"
)
self
.
conv3
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_conv3"
)
def
last_cls_out
(
self
,
x
,
name
=
None
):
if
self
.
downsample
:
out
=
[]
self
.
conv_down
=
ConvBNLayer
(
num_filters_list
=
[
32
,
64
,
128
,
256
]
num_channels
=
num_channels
,
for
i
in
range
(
len
(
x
)):
num_filters
=
num_filters
*
4
,
out
.
append
(
filter_size
=
1
,
self
.
bottleneck_block
(
act
=
None
,
input
=
x
[
i
],
name
=
name
+
"_downsample"
)
num_filters
=
num_filters_list
[
i
],
name
=
name
+
'conv_'
+
str
(
i
+
1
),
downsample
=
True
))
return
out
if
self
.
has_se
:
self
.
se
=
SELayer
(
num_channels
=
num_filters
*
4
,
num_filters
=
num_filters
*
4
,
reduction_ratio
=
16
,
name
=
'fc'
+
name
)
def
basic_block
(
self
,
def
forward
(
self
,
input
):
input
,
num_filters
,
stride
=
1
,
downsample
=
False
,
name
=
None
):
residual
=
input
residual
=
input
conv
=
self
.
conv_bn_layer
(
conv1
=
self
.
conv1
(
input
)
input
=
input
,
conv2
=
self
.
conv2
(
conv1
)
filter_size
=
3
,
conv3
=
self
.
conv3
(
conv2
)
if
self
.
downsample
:
residual
=
self
.
conv_down
(
input
)
if
self
.
has_se
:
conv3
=
self
.
se
(
conv3
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
conv3
,
y
=
residual
,
act
=
"relu"
)
return
y
class
BasicBlock
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
stride
=
1
,
has_se
=
False
,
downsample
=
False
,
name
=
None
):
super
(
BasicBlock
,
self
).
__init__
()
self
.
has_se
=
has_se
self
.
downsample
=
downsample
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
num_filters
=
num_filters
,
stride
=
stride
,
name
=
name
+
'_conv1'
)
conv
=
self
.
conv_bn_layer
(
input
=
conv
,
filter_size
=
3
,
filter_size
=
3
,
stride
=
stride
,
act
=
"relu"
,
name
=
name
+
"_conv1"
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
num_filters
=
num_filters
,
if_act
=
False
,
filter_size
=
3
,
name
=
name
+
'_conv2'
)
stride
=
1
,
if
downsample
:
act
=
None
,
residual
=
self
.
conv_bn_layer
(
name
=
name
+
"_conv2"
)
input
=
input
,
if
self
.
downsample
:
self
.
conv_down
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
filter_size
=
1
,
num_filters
=
num_filters
,
act
=
"relu"
,
if_act
=
False
,
name
=
name
+
"_downsample"
)
name
=
name
+
'_downsample'
)
if
self
.
has_se
:
if
self
.
has_se
:
conv
=
self
.
squeeze_excitation
(
self
.
se
=
SELayer
(
input
=
conv
,
num_channels
=
num_filters
,
num_channels
=
num_filters
,
num_filters
=
num_filters
,
reduction_ratio
=
16
,
reduction_ratio
=
16
,
name
=
name
+
'_fc'
)
name
=
'fc'
+
name
)
return
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
conv
,
act
=
'relu'
)
def
forward
(
self
,
input
):
def
bottleneck_block
(
self
,
input
,
num_filters
,
stride
=
1
,
downsample
=
False
,
name
=
None
):
residual
=
input
residual
=
input
conv
=
self
.
conv_bn_layer
(
conv1
=
self
.
conv1
(
input
)
input
=
input
,
conv2
=
self
.
conv2
(
conv1
)
filter_size
=
1
,
num_filters
=
num_filters
,
if
self
.
downsample
:
name
=
name
+
'_conv1'
)
residual
=
self
.
conv_down
(
input
)
conv
=
self
.
conv_bn_layer
(
input
=
conv
,
filter_size
=
3
,
num_filters
=
num_filters
,
stride
=
stride
,
name
=
name
+
'_conv2'
)
conv
=
self
.
conv_bn_layer
(
input
=
conv
,
filter_size
=
1
,
num_filters
=
num_filters
*
4
,
if_act
=
False
,
name
=
name
+
'_conv3'
)
if
downsample
:
residual
=
self
.
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
num_filters
*
4
,
if_act
=
False
,
name
=
name
+
'_downsample'
)
if
self
.
has_se
:
if
self
.
has_se
:
conv
=
self
.
squeeze_excitation
(
conv2
=
self
.
se
(
conv2
)
input
=
conv
,
num_channels
=
num_filters
*
4
,
y
=
fluid
.
layers
.
elementwise_add
(
x
=
conv2
,
y
=
residual
,
act
=
"relu"
)
reduction_ratio
=
16
,
return
y
name
=
name
+
'_fc'
)
return
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
conv
,
act
=
'relu'
)
class
SELayer
(
fluid
.
dygraph
.
Layer
):
def
squeeze_excitation
(
self
,
def
__init__
(
self
,
num_channels
,
num_filters
,
reduction_ratio
,
name
=
None
):
input
,
super
(
SELayer
,
self
).
__init__
()
num_channels
,
reduction_ratio
,
self
.
pool2d_gap
=
Pool2D
(
pool_type
=
'avg'
,
global_pooling
=
True
)
name
=
None
):
pool
=
fluid
.
layers
.
pool2d
(
self
.
_num_channels
=
num_channels
input
=
input
,
pool_size
=
0
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
med_ch
=
int
(
num_channels
/
reduction_ratio
)
squeeze
=
fluid
.
layers
.
fc
(
stdv
=
1.0
/
math
.
sqrt
(
num_channels
*
1.0
)
input
=
pool
,
self
.
squeeze
=
Linear
(
size
=
num_channels
/
reduction_ratio
,
num_channels
,
act
=
'relu'
,
med_ch
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
act
=
"relu"
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
name
+
'_sqz_weights'
),
name
=
name
+
"_sqz_weights"
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_sqz_offset'
))
bias_attr
=
ParamAttr
(
name
=
name
+
'_sqz_offset'
))
stdv
=
1.0
/
math
.
sqrt
(
squeeze
.
shape
[
1
]
*
1.0
)
excitation
=
fluid
.
layers
.
fc
(
stdv
=
1.0
/
math
.
sqrt
(
med_ch
*
1.0
)
input
=
squeeze
,
self
.
excitation
=
Linear
(
size
=
num_channels
,
med_ch
,
act
=
'sigmoid'
,
num_filters
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
act
=
"sigmoid"
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
name
+
'_exc_weights'
),
name
=
name
+
"_exc_weights"
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_exc_offset'
))
bias_attr
=
ParamAttr
(
name
=
name
+
'_exc_offset'
))
scale
=
fluid
.
layers
.
elementwise_mul
(
x
=
input
,
y
=
excitation
,
axis
=
0
)
return
scale
def
forward
(
self
,
input
):
pool
=
self
.
pool2d_gap
(
input
)
def
conv_bn_layer
(
self
,
pool
=
fluid
.
layers
.
reshape
(
pool
,
shape
=
[
-
1
,
self
.
_num_channels
])
input
,
squeeze
=
self
.
squeeze
(
pool
)
filter_size
,
excitation
=
self
.
excitation
(
squeeze
)
num_filters
,
excitation
=
fluid
.
layers
.
reshape
(
stride
=
1
,
excitation
,
shape
=
[
-
1
,
self
.
_num_channels
,
1
,
1
])
padding
=
1
,
out
=
input
*
excitation
num_groups
=
1
,
return
out
if_act
=
True
,
name
=
None
):
conv
=
fluid
.
layers
.
conv2d
(
class
Stage
(
fluid
.
dygraph
.
Layer
):
input
=
input
,
def
__init__
(
self
,
num_filters
=
num_filters
,
num_channels
,
filter_size
=
filter_size
,
num_modules
,
stride
=
stride
,
num_filters
,
padding
=
(
filter_size
-
1
)
//
2
,
has_se
=
False
,
groups
=
num_groups
,
multi_scale_output
=
True
,
act
=
None
,
name
=
None
):
param_attr
=
ParamAttr
(
super
(
Stage
,
self
).
__init__
()
initializer
=
MSRA
(),
name
=
name
+
'_weights'
),
bias_attr
=
False
)
self
.
_num_modules
=
num_modules
bn_name
=
name
+
'_bn'
bn
=
fluid
.
layers
.
batch_norm
(
self
.
stage_func_list
=
[]
input
=
conv
,
for
i
in
range
(
num_modules
):
if
i
==
num_modules
-
1
and
not
multi_scale_output
:
stage_func
=
self
.
add_sublayer
(
"stage_{}_{}"
.
format
(
name
,
i
+
1
),
HighResolutionModule
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
has_se
=
has_se
,
multi_scale_output
=
False
,
name
=
name
+
'_'
+
str
(
i
+
1
)))
else
:
stage_func
=
self
.
add_sublayer
(
"stage_{}_{}"
.
format
(
name
,
i
+
1
),
HighResolutionModule
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
has_se
=
has_se
,
name
=
name
+
'_'
+
str
(
i
+
1
)))
self
.
stage_func_list
.
append
(
stage_func
)
def
forward
(
self
,
input
):
out
=
input
for
idx
in
range
(
self
.
_num_modules
):
out
=
self
.
stage_func_list
[
idx
](
out
)
return
out
class
HighResolutionModule
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
has_se
=
False
,
multi_scale_output
=
True
,
name
=
None
):
super
(
HighResolutionModule
,
self
).
__init__
()
self
.
branches_func
=
Branches
(
block_num
=
4
,
in_channels
=
num_channels
,
out_channels
=
num_filters
,
has_se
=
has_se
,
name
=
name
)
self
.
fuse_func
=
FuseLayers
(
in_channels
=
num_filters
,
out_channels
=
num_filters
,
multi_scale_output
=
multi_scale_output
,
name
=
name
)
def
forward
(
self
,
input
):
out
=
self
.
branches_func
(
input
)
out
=
self
.
fuse_func
(
out
)
return
out
class
FuseLayers
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels
,
multi_scale_output
=
True
,
name
=
None
):
super
(
FuseLayers
,
self
).
__init__
()
self
.
_actual_ch
=
len
(
in_channels
)
if
multi_scale_output
else
1
self
.
_in_channels
=
in_channels
self
.
residual_func_list
=
[]
for
i
in
range
(
self
.
_actual_ch
):
for
j
in
range
(
len
(
in_channels
)):
residual_func
=
None
if
j
>
i
:
residual_func
=
self
.
add_sublayer
(
"residual_{}_layer_{}_{}"
.
format
(
name
,
i
+
1
,
j
+
1
),
ConvBNLayer
(
num_channels
=
in_channels
[
j
],
num_filters
=
out_channels
[
i
],
filter_size
=
1
,
stride
=
1
,
act
=
None
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
)))
self
.
residual_func_list
.
append
(
residual_func
)
elif
j
<
i
:
pre_num_filters
=
in_channels
[
j
]
for
k
in
range
(
i
-
j
):
if
k
==
i
-
j
-
1
:
residual_func
=
self
.
add_sublayer
(
"residual_{}_layer_{}_{}_{}"
.
format
(
name
,
i
+
1
,
j
+
1
,
k
+
1
),
ConvBNLayer
(
num_channels
=
pre_num_filters
,
num_filters
=
out_channels
[
i
],
filter_size
=
3
,
stride
=
2
,
act
=
None
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
)
+
'_'
+
str
(
k
+
1
)))
pre_num_filters
=
out_channels
[
i
]
else
:
residual_func
=
self
.
add_sublayer
(
"residual_{}_layer_{}_{}_{}"
.
format
(
name
,
i
+
1
,
j
+
1
,
k
+
1
),
ConvBNLayer
(
num_channels
=
pre_num_filters
,
num_filters
=
out_channels
[
j
],
filter_size
=
3
,
stride
=
2
,
act
=
"relu"
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
)
+
'_'
+
str
(
k
+
1
)))
pre_num_filters
=
out_channels
[
j
]
self
.
residual_func_list
.
append
(
residual_func
)
def
forward
(
self
,
input
):
outs
=
[]
residual_func_idx
=
0
for
i
in
range
(
self
.
_actual_ch
):
residual
=
input
[
i
]
for
j
in
range
(
len
(
self
.
_in_channels
)):
if
j
>
i
:
y
=
self
.
residual_func_list
[
residual_func_idx
](
input
[
j
])
residual_func_idx
+=
1
y
=
fluid
.
layers
.
resize_nearest
(
input
=
y
,
scale
=
2
**
(
j
-
i
))
residual
=
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
y
,
act
=
None
)
elif
j
<
i
:
y
=
input
[
j
]
for
k
in
range
(
i
-
j
):
y
=
self
.
residual_func_list
[
residual_func_idx
](
y
)
residual_func_idx
+=
1
residual
=
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
y
,
act
=
None
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
residual
=
layer_helper
.
append_activation
(
residual
)
outs
.
append
(
residual
)
return
outs
class
LastClsOut
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channel_list
,
has_se
,
num_filters_list
=
[
32
,
64
,
128
,
256
],
name
=
None
):
super
(
LastClsOut
,
self
).
__init__
()
self
.
func_list
=
[]
for
idx
in
range
(
len
(
num_channel_list
)):
func
=
self
.
add_sublayer
(
"conv_{}_conv_{}"
.
format
(
name
,
idx
+
1
),
BottleneckBlock
(
num_channels
=
num_channel_list
[
idx
],
num_filters
=
num_filters_list
[
idx
],
has_se
=
has_se
,
downsample
=
True
,
name
=
name
+
'conv_'
+
str
(
idx
+
1
)))
self
.
func_list
.
append
(
func
)
def
forward
(
self
,
inputs
):
outs
=
[]
for
idx
,
input
in
enumerate
(
inputs
):
out
=
self
.
func_list
[
idx
](
input
)
outs
.
append
(
out
)
return
outs
class
HRNet
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
width
=
18
,
has_se
=
False
,
class_dim
=
1000
):
super
(
HRNet
,
self
).
__init__
()
self
.
width
=
width
self
.
has_se
=
has_se
self
.
channels
=
{
18
:
[[
18
,
36
],
[
18
,
36
,
72
],
[
18
,
36
,
72
,
144
]],
30
:
[[
30
,
60
],
[
30
,
60
,
120
],
[
30
,
60
,
120
,
240
]],
32
:
[[
32
,
64
],
[
32
,
64
,
128
],
[
32
,
64
,
128
,
256
]],
40
:
[[
40
,
80
],
[
40
,
80
,
160
],
[
40
,
80
,
160
,
320
]],
44
:
[[
44
,
88
],
[
44
,
88
,
176
],
[
44
,
88
,
176
,
352
]],
48
:
[[
48
,
96
],
[
48
,
96
,
192
],
[
48
,
96
,
192
,
384
]],
60
:
[[
60
,
120
],
[
60
,
120
,
240
],
[
60
,
120
,
240
,
480
]],
64
:
[[
64
,
128
],
[
64
,
128
,
256
],
[
64
,
128
,
256
,
512
]]
}
self
.
_class_dim
=
class_dim
channels_2
,
channels_3
,
channels_4
=
self
.
channels
[
width
]
num_modules_2
,
num_modules_3
,
num_modules_4
=
1
,
4
,
3
self
.
conv_layer1_1
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
2
,
act
=
'relu'
,
name
=
"layer1_1"
)
self
.
conv_layer1_2
=
ConvBNLayer
(
num_channels
=
64
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
2
,
act
=
'relu'
,
name
=
"layer1_2"
)
self
.
la1
=
Layer1
(
num_channels
=
64
,
has_se
=
has_se
,
name
=
"layer2"
)
self
.
tr1
=
TransitionLayer
(
in_channels
=
[
256
],
out_channels
=
channels_2
,
name
=
"tr1"
)
self
.
st2
=
Stage
(
num_channels
=
channels_2
,
num_modules
=
num_modules_2
,
num_filters
=
channels_2
,
has_se
=
self
.
has_se
,
name
=
"st2"
)
self
.
tr2
=
TransitionLayer
(
in_channels
=
channels_2
,
out_channels
=
channels_3
,
name
=
"tr2"
)
self
.
st3
=
Stage
(
num_channels
=
channels_3
,
num_modules
=
num_modules_3
,
num_filters
=
channels_3
,
has_se
=
self
.
has_se
,
name
=
"st3"
)
self
.
tr3
=
TransitionLayer
(
in_channels
=
channels_3
,
out_channels
=
channels_4
,
name
=
"tr3"
)
self
.
st4
=
Stage
(
num_channels
=
channels_4
,
num_modules
=
num_modules_4
,
num_filters
=
channels_4
,
has_se
=
self
.
has_se
,
name
=
"st4"
)
# classification
num_filters_list
=
[
32
,
64
,
128
,
256
]
self
.
last_cls
=
LastClsOut
(
num_channel_list
=
channels_4
,
has_se
=
self
.
has_se
,
num_filters_list
=
num_filters_list
,
name
=
"cls_head"
,
)
last_num_filters
=
[
256
,
512
,
1024
]
self
.
cls_head_conv_list
=
[]
for
idx
in
range
(
3
):
self
.
cls_head_conv_list
.
append
(
self
.
add_sublayer
(
"cls_head_add{}"
.
format
(
idx
+
1
),
ConvBNLayer
(
num_channels
=
num_filters_list
[
idx
]
*
4
,
num_filters
=
last_num_filters
[
idx
],
filter_size
=
3
,
stride
=
2
,
name
=
"cls_head_add"
+
str
(
idx
+
1
))))
self
.
conv_last
=
ConvBNLayer
(
num_channels
=
1024
,
num_filters
=
2048
,
filter_size
=
1
,
stride
=
1
,
name
=
"cls_head_last_conv"
)
self
.
pool2d_avg
=
Pool2D
(
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
2048
*
1.0
)
self
.
out
=
Linear
(
2048
,
class_dim
,
param_attr
=
ParamAttr
(
param_attr
=
ParamAttr
(
name
=
bn_name
+
"_scale"
,
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
initializer
=
fluid
.
initializer
.
Constant
(
1.0
)),
name
=
"fc_weights"
),
bias_attr
=
ParamAttr
(
bias_attr
=
ParamAttr
(
name
=
"fc_offset"
))
name
=
bn_name
+
"_offset"
,
initializer
=
fluid
.
initializer
.
Constant
(
0.0
)),
def
forward
(
self
,
input
):
moving_mean_name
=
bn_name
+
'_mean'
,
conv1
=
self
.
conv_layer1_1
(
input
)
moving_variance_name
=
bn_name
+
'_variance'
)
conv2
=
self
.
conv_layer1_2
(
conv1
)
if
if_act
:
bn
=
fluid
.
layers
.
relu
(
bn
)
la1
=
self
.
la1
(
conv2
)
return
bn
tr1
=
self
.
tr1
([
la1
])
st2
=
self
.
st2
(
tr1
)
tr2
=
self
.
tr2
(
st2
)
st3
=
self
.
st3
(
tr2
)
tr3
=
self
.
tr3
(
st3
)
st4
=
self
.
st4
(
tr3
)
last_cls
=
self
.
last_cls
(
st4
)
y
=
last_cls
[
0
]
for
idx
in
range
(
3
):
y
=
last_cls
[
idx
+
1
]
+
self
.
cls_head_conv_list
[
idx
](
y
)
y
=
self
.
conv_last
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
fluid
.
layers
.
reshape
(
y
,
shape
=
[
0
,
-
1
])
y
=
self
.
out
(
y
)
return
y
def
HRNet_W18_C
():
def
HRNet_W18_C
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录