Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
be35b7cc
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
be35b7cc
编写于
6月 28, 2020
作者:
L
littletomatodonkey
提交者:
GitHub
6月 28, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #182 from littletomatodonkey/dyg_model
add dpn, densenet and hrnet dygraph model
上级
3b93ffa0
b857342a
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
1100 addition
and
669 deletion
+1100
-669
ppcls/modeling/architectures/densenet.py
ppcls/modeling/architectures/densenet.py
+231
-142
ppcls/modeling/architectures/dpn.py
ppcls/modeling/architectures/dpn.py
+268
-194
ppcls/modeling/architectures/hrnet.py
ppcls/modeling/architectures/hrnet.py
+601
-333
未找到文件。
ppcls/modeling/architectures/densenet.py
浏览文件 @
be35b7cc
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
math
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
__all__
=
[
"DenseNet"
,
"DenseNet121"
,
"DenseNet161"
,
"DenseNet169"
,
"DenseNet201"
,
"DenseNet264"
"DenseNet121"
,
"DenseNet161"
,
"DenseNet169"
,
"DenseNet201"
,
"DenseNet264"
]
class
DenseNet
():
def
__init__
(
self
,
layers
=
121
):
self
.
layers
=
layers
class
BNACConvLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
pad
=
0
,
groups
=
1
,
act
=
"relu"
,
name
=
None
):
super
(
BNACConvLayer
,
self
).
__init__
()
self
.
_batch_norm
=
BatchNorm
(
num_channels
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
name
+
'_bn_scale'
),
bias_attr
=
ParamAttr
(
name
+
'_bn_offset'
),
moving_mean_name
=
name
+
'_bn_mean'
,
moving_variance_name
=
name
+
'_bn_variance'
)
self
.
_conv
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
pad
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
def
forward
(
self
,
input
):
y
=
self
.
_batch_norm
(
input
)
y
=
self
.
_conv
(
y
)
return
y
class
DenseLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
growth_rate
,
bn_size
,
dropout
,
name
=
None
):
super
(
DenseLayer
,
self
).
__init__
()
self
.
dropout
=
dropout
self
.
bn_ac_func1
=
BNACConvLayer
(
num_channels
=
num_channels
,
num_filters
=
bn_size
*
growth_rate
,
filter_size
=
1
,
pad
=
0
,
stride
=
1
,
name
=
name
+
"_x1"
)
self
.
bn_ac_func2
=
BNACConvLayer
(
num_channels
=
bn_size
*
growth_rate
,
num_filters
=
growth_rate
,
filter_size
=
3
,
pad
=
1
,
stride
=
1
,
name
=
name
+
"_x2"
)
if
dropout
:
self
.
dropout_func
=
Dropout
(
p
=
dropout
)
def
forward
(
self
,
input
):
conv
=
self
.
bn_ac_func1
(
input
)
conv
=
self
.
bn_ac_func2
(
conv
)
if
self
.
dropout
:
conv
=
self
.
dropout_func
(
conv
)
conv
=
fluid
.
layers
.
concat
([
input
,
conv
],
axis
=
1
)
return
conv
class
DenseBlock
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_layers
,
bn_size
,
growth_rate
,
dropout
,
name
=
None
):
super
(
DenseBlock
,
self
).
__init__
()
self
.
dropout
=
dropout
self
.
dense_layer_func
=
[]
pre_channel
=
num_channels
for
layer
in
range
(
num_layers
):
self
.
dense_layer_func
.
append
(
self
.
add_sublayer
(
"{}_{}"
.
format
(
name
,
layer
+
1
),
DenseLayer
(
num_channels
=
pre_channel
,
growth_rate
=
growth_rate
,
bn_size
=
bn_size
,
dropout
=
dropout
,
name
=
name
+
'_'
+
str
(
layer
+
1
))))
pre_channel
=
pre_channel
+
growth_rate
def
forward
(
self
,
input
):
conv
=
input
for
func
in
self
.
dense_layer_func
:
conv
=
func
(
conv
)
return
conv
class
TransitionLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_output_features
,
name
=
None
):
super
(
TransitionLayer
,
self
).
__init__
()
self
.
conv_ac_func
=
BNACConvLayer
(
num_channels
=
num_channels
,
num_filters
=
num_output_features
,
filter_size
=
1
,
pad
=
0
,
stride
=
1
,
name
=
name
)
self
.
pool2d_avg
=
Pool2D
(
pool_size
=
2
,
pool_stride
=
2
,
pool_type
=
'avg'
)
def
forward
(
self
,
input
):
y
=
self
.
conv_ac_func
(
input
)
y
=
self
.
pool2d_avg
(
y
)
return
y
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
pad
=
0
,
groups
=
1
,
act
=
"relu"
,
name
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
pad
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
name
+
'_bn_scale'
),
bias_attr
=
ParamAttr
(
name
+
'_bn_offset'
),
moving_mean_name
=
name
+
'_bn_mean'
,
moving_variance_name
=
name
+
'_bn_variance'
)
def
forward
(
self
,
input
):
y
=
self
.
_conv
(
input
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
DenseNet
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
layers
=
60
,
bn_size
=
4
,
dropout
=
0
,
class_dim
=
1000
):
super
(
DenseNet
,
self
).
__init__
()
def
net
(
self
,
input
,
bn_size
=
4
,
dropout
=
0
,
class_dim
=
1000
):
layers
=
self
.
layers
supported_layers
=
[
121
,
161
,
169
,
201
,
264
]
assert
layers
in
supported_layers
,
\
"supported layers are {} but input layer is {}"
.
format
(
supported_layers
,
layers
)
"supported layers are {} but input layer is {}"
.
format
(
supported_layers
,
layers
)
densenet_spec
=
{
121
:
(
64
,
32
,
[
6
,
12
,
24
,
16
]),
161
:
(
96
,
48
,
[
6
,
12
,
36
,
24
]),
...
...
@@ -44,139 +186,86 @@ class DenseNet():
201
:
(
64
,
32
,
[
6
,
12
,
48
,
32
]),
264
:
(
64
,
32
,
[
6
,
12
,
64
,
48
])
}
num_init_features
,
growth_rate
,
block_config
=
densenet_spec
[
layers
]
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
self
.
conv1_func
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
num_init_features
,
filter_size
=
7
,
stride
=
2
,
padding
=
3
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
"conv1_weights"
),
bias_attr
=
False
)
conv
=
fluid
.
layers
.
batch_norm
(
input
=
conv
,
pad
=
3
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
'conv1_bn_scale'
),
bias_attr
=
ParamAttr
(
name
=
'conv1_bn_offset'
),
moving_mean_name
=
'conv1_bn_mean'
,
moving_variance_name
=
'conv1_bn_variance
'
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
name
=
"conv1"
)
self
.
pool2d_max
=
Pool2D
(
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max
'
)
self
.
block_config
=
block_config
self
.
dense_block_func_list
=
[]
self
.
transition_func_list
=
[]
pre_num_channels
=
num_init_features
num_features
=
num_init_features
for
i
,
num_layers
in
enumerate
(
block_config
):
conv
=
self
.
make_dense_block
(
conv
,
num_layers
,
bn_size
,
growth_rate
,
dropout
,
name
=
'conv'
+
str
(
i
+
2
))
self
.
dense_block_func_list
.
append
(
self
.
add_sublayer
(
"db_conv_{}"
.
format
(
i
+
2
),
DenseBlock
(
num_channels
=
pre_num_channels
,
num_layers
=
num_layers
,
bn_size
=
bn_size
,
growth_rate
=
growth_rate
,
dropout
=
dropout
,
name
=
'conv'
+
str
(
i
+
2
))))
num_features
=
num_features
+
num_layers
*
growth_rate
pre_num_channels
=
num_features
if
i
!=
len
(
block_config
)
-
1
:
conv
=
self
.
make_transition
(
conv
,
num_features
//
2
,
name
=
'conv'
+
str
(
i
+
2
)
+
'_blk'
)
self
.
transition_func_list
.
append
(
self
.
add_sublayer
(
"tr_conv{}_blk"
.
format
(
i
+
2
),
TransitionLayer
(
num_channels
=
pre_num_channels
,
num_output_features
=
num_features
//
2
,
name
=
'conv'
+
str
(
i
+
2
)
+
"_blk"
)))
pre_num_channels
=
num_features
//
2
num_features
=
num_features
//
2
conv
=
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
'relu'
,
self
.
batch_norm
=
BatchNorm
(
num_features
,
act
=
"relu"
,
param_attr
=
ParamAttr
(
name
=
'conv5_blk_bn_scale'
),
bias_attr
=
ParamAttr
(
name
=
'conv5_blk_bn_offset'
),
moving_mean_name
=
'conv5_blk_bn_mean'
,
moving_variance_name
=
'conv5_blk_bn_variance'
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
conv
.
shape
[
1
]
*
1.0
)
out
=
fluid
.
layers
.
fc
(
input
=
conv
,
size
=
class_dim
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
self
.
pool2d_avg
=
Pool2D
(
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
num_features
*
1.0
)
self
.
out
=
Linear
(
num_features
,
class_dim
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
"fc_weights"
),
bias_attr
=
ParamAttr
(
name
=
'fc_offset'
))
return
out
bias_attr
=
ParamAttr
(
name
=
"fc_offset"
))
def
make_transition
(
self
,
input
,
num_output_features
,
name
=
None
):
bn_ac
=
fluid
.
layers
.
batch_norm
(
input
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
name
+
'_bn_scale'
),
bias_attr
=
ParamAttr
(
name
+
'_bn_offset'
),
moving_mean_name
=
name
+
'_bn_mean'
,
moving_variance_name
=
name
+
'_bn_variance'
)
def
forward
(
self
,
input
):
conv
=
self
.
conv1_func
(
input
)
conv
=
self
.
pool2d_max
(
conv
)
bn_ac_conv
=
fluid
.
layers
.
conv2d
(
input
=
bn_ac
,
num_filters
=
num_output_features
,
filter_size
=
1
,
stride
=
1
,
act
=
None
,
bias_attr
=
False
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
))
pool
=
fluid
.
layers
.
pool2d
(
input
=
bn_ac_conv
,
pool_size
=
2
,
pool_stride
=
2
,
pool_type
=
'avg'
)
return
pool
def
make_dense_block
(
self
,
input
,
num_layers
,
bn_size
,
growth_rate
,
dropout
,
name
=
None
):
conv
=
input
for
layer
in
range
(
num_layers
):
conv
=
self
.
make_dense_layer
(
conv
,
growth_rate
,
bn_size
,
dropout
,
name
=
name
+
'_'
+
str
(
layer
+
1
))
return
conv
for
i
,
num_layers
in
enumerate
(
self
.
block_config
):
conv
=
self
.
dense_block_func_list
[
i
](
conv
)
if
i
!=
len
(
self
.
block_config
)
-
1
:
conv
=
self
.
transition_func_list
[
i
](
conv
)
def
make_dense_layer
(
self
,
input
,
growth_rate
,
bn_size
,
dropout
,
name
=
None
):
bn_ac
=
fluid
.
layers
.
batch_norm
(
input
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
name
+
'_x1_bn_scale'
),
bias_attr
=
ParamAttr
(
name
+
'_x1_bn_offset'
),
moving_mean_name
=
name
+
'_x1_bn_mean'
,
moving_variance_name
=
name
+
'_x1_bn_variance'
)
bn_ac_conv
=
fluid
.
layers
.
conv2d
(
input
=
bn_ac
,
num_filters
=
bn_size
*
growth_rate
,
filter_size
=
1
,
stride
=
1
,
act
=
None
,
bias_attr
=
False
,
param_attr
=
ParamAttr
(
name
=
name
+
"_x1_weights"
))
bn_ac
=
fluid
.
layers
.
batch_norm
(
bn_ac_conv
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
name
+
'_x2_bn_scale'
),
bias_attr
=
ParamAttr
(
name
+
'_x2_bn_offset'
),
moving_mean_name
=
name
+
'_x2_bn_mean'
,
moving_variance_name
=
name
+
'_x2_bn_variance'
)
bn_ac_conv
=
fluid
.
layers
.
conv2d
(
input
=
bn_ac
,
num_filters
=
growth_rate
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
act
=
None
,
bias_attr
=
False
,
param_attr
=
ParamAttr
(
name
=
name
+
"_x2_weights"
))
if
dropout
:
bn_ac_conv
=
fluid
.
layers
.
dropout
(
x
=
bn_ac_conv
,
dropout_prob
=
dropout
)
bn_ac_conv
=
fluid
.
layers
.
concat
([
input
,
bn_ac_conv
],
axis
=
1
)
return
bn_ac_conv
conv
=
self
.
batch_norm
(
conv
)
y
=
self
.
pool2d_avg
(
conv
)
y
=
fluid
.
layers
.
reshape
(
y
,
shape
=
[
0
,
-
1
])
y
=
self
.
out
(
y
)
return
y
def
DenseNet121
():
...
...
ppcls/modeling/architectures/dpn.py
浏览文件 @
be35b7cc
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
numpy
as
np
import
time
import
sys
import
math
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
import
math
__all__
=
[
"DPN"
,
"DPN68"
,
"DPN92"
,
"DPN98"
,
"DPN107"
,
"DPN131"
,
]
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
pad
=
0
,
groups
=
1
,
act
=
"relu"
,
name
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
pad
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
name
+
'_bn_scale'
),
bias_attr
=
ParamAttr
(
name
+
'_bn_offset'
),
moving_mean_name
=
name
+
'_bn_mean'
,
moving_variance_name
=
name
+
'_bn_variance'
)
def
forward
(
self
,
input
):
y
=
self
.
_conv
(
input
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
BNACConvLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
pad
=
0
,
groups
=
1
,
act
=
"relu"
,
name
=
None
):
super
(
BNACConvLayer
,
self
).
__init__
()
self
.
num_channels
=
num_channels
self
.
name
=
name
self
.
_batch_norm
=
BatchNorm
(
num_channels
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
name
+
'_bn_scale'
),
bias_attr
=
ParamAttr
(
name
+
'_bn_offset'
),
moving_mean_name
=
name
+
'_bn_mean'
,
moving_variance_name
=
name
+
'_bn_variance'
)
self
.
_conv
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
pad
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
def
forward
(
self
,
input
):
y
=
self
.
_batch_norm
(
input
)
y
=
self
.
_conv
(
y
)
return
y
class
DualPathFactory
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_1x1_a
,
num_3x3_b
,
num_1x1_c
,
inc
,
G
,
_type
=
'normal'
,
name
=
None
):
super
(
DualPathFactory
,
self
).
__init__
()
self
.
num_1x1_c
=
num_1x1_c
self
.
inc
=
inc
self
.
name
=
name
kw
=
3
kh
=
3
pw
=
(
kw
-
1
)
//
2
ph
=
(
kh
-
1
)
//
2
# type
if
_type
==
'proj'
:
key_stride
=
1
self
.
has_proj
=
True
elif
_type
==
'down'
:
key_stride
=
2
self
.
has_proj
=
True
elif
_type
==
'normal'
:
key_stride
=
1
self
.
has_proj
=
False
else
:
print
(
"not implemented now!!!"
)
sys
.
exit
(
1
)
__all__
=
[
"DPN"
,
"DPN68"
,
"DPN92"
,
"DPN98"
,
"DPN107"
,
"DPN131"
]
data_in_ch
=
sum
(
num_channels
)
if
isinstance
(
num_channels
,
list
)
else
num_channels
if
self
.
has_proj
:
self
.
c1x1_w_func
=
BNACConvLayer
(
num_channels
=
data_in_ch
,
num_filters
=
num_1x1_c
+
2
*
inc
,
filter_size
=
(
1
,
1
),
pad
=
(
0
,
0
),
stride
=
(
key_stride
,
key_stride
),
name
=
name
+
"_match"
)
class
DPN
(
object
):
def
__init__
(
self
,
layers
=
68
):
self
.
layers
=
layers
self
.
c1x1_a_func
=
BNACConvLayer
(
num_channels
=
data_in_ch
,
num_filters
=
num_1x1_a
,
filter_size
=
(
1
,
1
),
pad
=
(
0
,
0
),
name
=
name
+
"_conv1"
)
self
.
c3x3_b_func
=
BNACConvLayer
(
num_channels
=
num_1x1_a
,
num_filters
=
num_3x3_b
,
filter_size
=
(
kw
,
kh
),
pad
=
(
pw
,
ph
),
stride
=
(
key_stride
,
key_stride
),
groups
=
G
,
name
=
name
+
"_conv2"
)
self
.
c1x1_c_func
=
BNACConvLayer
(
num_channels
=
num_3x3_b
,
num_filters
=
num_1x1_c
+
inc
,
filter_size
=
(
1
,
1
),
pad
=
(
0
,
0
),
name
=
name
+
"_conv3"
)
def
forward
(
self
,
input
):
# PROJ
if
isinstance
(
input
,
list
):
data_in
=
fluid
.
layers
.
concat
([
input
[
0
],
input
[
1
]],
axis
=
1
)
else
:
data_in
=
input
if
self
.
has_proj
:
c1x1_w
=
self
.
c1x1_w_func
(
data_in
)
data_o1
,
data_o2
=
fluid
.
layers
.
split
(
c1x1_w
,
num_or_sections
=
[
self
.
num_1x1_c
,
2
*
self
.
inc
],
dim
=
1
)
else
:
data_o1
=
input
[
0
]
data_o2
=
input
[
1
]
c1x1_a
=
self
.
c1x1_a_func
(
data_in
)
c3x3_b
=
self
.
c3x3_b_func
(
c1x1_a
)
c1x1_c
=
self
.
c1x1_c_func
(
c3x3_b
)
c1x1_c1
,
c1x1_c2
=
fluid
.
layers
.
split
(
c1x1_c
,
num_or_sections
=
[
self
.
num_1x1_c
,
self
.
inc
],
dim
=
1
)
def
net
(
self
,
input
,
class_dim
=
1000
):
# get network args
args
=
self
.
get_net_args
(
self
.
layers
)
# OUTPUTS
summ
=
fluid
.
layers
.
elementwise_add
(
x
=
data_o1
,
y
=
c1x1_c1
)
dense
=
fluid
.
layers
.
concat
([
data_o2
,
c1x1_c2
],
axis
=
1
)
# tensor, channels
return
[
summ
,
dense
]
class
DPN
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
layers
=
60
,
class_dim
=
1000
):
super
(
DPN
,
self
).
__init__
()
self
.
_class_dim
=
class_dim
args
=
self
.
get_net_args
(
layers
)
bws
=
args
[
'bw'
]
inc_sec
=
args
[
'inc_sec'
]
rs
=
args
[
'r'
]
...
...
@@ -45,39 +209,23 @@ class DPN(object):
init_filter_size
=
args
[
'init_filter_size'
]
init_padding
=
args
[
'init_padding'
]
## define Dual Path Network
self
.
k_sec
=
k_sec
# conv1
conv1_x_1
=
fluid
.
layers
.
conv2d
(
input
=
input
,
self
.
conv1_x_1_func
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
init_num_filter
,
filter_size
=
init_filter_size
,
filter_size
=
3
,
stride
=
2
,
padding
=
init_padding
,
groups
=
1
,
act
=
None
,
bias_attr
=
False
,
name
=
"conv1"
,
param_attr
=
ParamAttr
(
name
=
"conv1_weights"
),
)
conv1_x_1
=
fluid
.
layers
.
batch_norm
(
input
=
conv1_x_1
,
pad
=
1
,
act
=
'relu'
,
is_test
=
False
,
name
=
"conv1_bn"
,
param_attr
=
ParamAttr
(
name
=
'conv1_bn_scale'
),
bias_attr
=
ParamAttr
(
'conv1_bn_offset'
),
moving_mean_name
=
'conv1_bn_mean'
,
moving_variance_name
=
'conv1_bn_variance'
,
)
convX_x_x
=
fluid
.
layers
.
pool2d
(
input
=
conv1_x_1
,
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
,
name
=
"pool1"
)
name
=
"conv1"
)
self
.
pool2d_max
=
Pool2D
(
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
num_channel_dpn
=
init_num_filter
self
.
dpn_func_list
=
[]
#conv2 - conv5
match_list
,
num
=
[],
0
for
gc
in
range
(
4
):
...
...
@@ -93,43 +241,82 @@ class DPN(object):
_type2
=
'normal'
match
=
match
+
k_sec
[
gc
-
1
]
match_list
.
append
(
match
)
self
.
dpn_func_list
.
append
(
self
.
add_sublayer
(
"dpn{}"
.
format
(
match
),
DualPathFactory
(
num_channels
=
num_channel_dpn
,
num_1x1_a
=
R
,
num_3x3_b
=
R
,
num_1x1_c
=
bw
,
inc
=
inc
,
G
=
G
,
_type
=
_type1
,
name
=
"dpn"
+
str
(
match
))))
num_channel_dpn
=
[
bw
,
3
*
inc
]
convX_x_x
=
self
.
dual_path_factory
(
convX_x_x
,
R
,
R
,
bw
,
inc
,
G
,
_type1
,
name
=
"dpn"
+
str
(
match
))
for
i_ly
in
range
(
2
,
k_sec
[
gc
]
+
1
):
num
+=
1
if
num
in
match_list
:
num
+=
1
convX_x_x
=
self
.
dual_path_factory
(
convX_x_x
,
R
,
R
,
bw
,
inc
,
G
,
_type2
,
name
=
"dpn"
+
str
(
num
))
conv5_x_x
=
fluid
.
layers
.
concat
(
convX_x_x
,
axis
=
1
)
conv5_x_x
=
fluid
.
layers
.
batch_norm
(
input
=
conv5_x_x
,
act
=
'relu'
,
is_test
=
False
,
name
=
"final_concat_bn"
,
self
.
dpn_func_list
.
append
(
self
.
add_sublayer
(
"dpn{}"
.
format
(
num
),
DualPathFactory
(
num_channels
=
num_channel_dpn
,
num_1x1_a
=
R
,
num_3x3_b
=
R
,
num_1x1_c
=
bw
,
inc
=
inc
,
G
=
G
,
_type
=
_type2
,
name
=
"dpn"
+
str
(
num
))))
num_channel_dpn
=
[
num_channel_dpn
[
0
],
num_channel_dpn
[
1
]
+
inc
]
out_channel
=
sum
(
num_channel_dpn
)
self
.
conv5_x_x_bn
=
BatchNorm
(
num_channels
=
sum
(
num_channel_dpn
),
act
=
"relu"
,
param_attr
=
ParamAttr
(
name
=
'final_concat_bn_scale'
),
bias_attr
=
ParamAttr
(
'final_concat_bn_offset'
),
moving_mean_name
=
'final_concat_bn_mean'
,
moving_variance_name
=
'final_concat_bn_variance'
,
)
pool5
=
fluid
.
layers
.
pool2d
(
input
=
conv5_x_x
,
pool_size
=
7
,
pool_stride
=
1
,
pool_padding
=
0
,
pool_type
=
'avg'
,
)
moving_variance_name
=
'final_concat_bn_variance'
)
self
.
pool2d_avg
=
Pool2D
(
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
0.01
fc6
=
fluid
.
layers
.
fc
(
input
=
pool5
,
size
=
class_dim
,
self
.
out
=
Linear
(
out_channel
,
class_dim
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
'fc_weights'
),
bias_attr
=
ParamAttr
(
name
=
'fc_offset'
))
name
=
"fc_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc_offset"
))
return
fc6
def
forward
(
self
,
input
):
conv1_x_1
=
self
.
conv1_x_1_func
(
input
)
convX_x_x
=
self
.
pool2d_max
(
conv1_x_1
)
dpn_idx
=
0
for
gc
in
range
(
4
):
convX_x_x
=
self
.
dpn_func_list
[
dpn_idx
](
convX_x_x
)
dpn_idx
+=
1
for
i_ly
in
range
(
2
,
self
.
k_sec
[
gc
]
+
1
):
convX_x_x
=
self
.
dpn_func_list
[
dpn_idx
](
convX_x_x
)
dpn_idx
+=
1
conv5_x_x
=
fluid
.
layers
.
concat
(
convX_x_x
,
axis
=
1
)
conv5_x_x
=
self
.
conv5_x_x_bn
(
conv5_x_x
)
y
=
self
.
pool2d_avg
(
conv5_x_x
)
y
=
fluid
.
layers
.
reshape
(
y
,
shape
=
[
0
,
-
1
])
y
=
self
.
out
(
y
)
return
y
def
get_net_args
(
self
,
layers
):
if
layers
==
68
:
...
...
@@ -198,119 +385,6 @@ class DPN(object):
return
net_arg
def
dual_path_factory
(
self
,
data
,
num_1x1_a
,
num_3x3_b
,
num_1x1_c
,
inc
,
G
,
_type
=
'normal'
,
name
=
None
):
kw
=
3
kh
=
3
pw
=
(
kw
-
1
)
//
2
ph
=
(
kh
-
1
)
//
2
# type
if
_type
is
'proj'
:
key_stride
=
1
has_proj
=
True
if
_type
is
'down'
:
key_stride
=
2
has_proj
=
True
if
_type
is
'normal'
:
key_stride
=
1
has_proj
=
False
# PROJ
if
type
(
data
)
is
list
:
data_in
=
fluid
.
layers
.
concat
([
data
[
0
],
data
[
1
]],
axis
=
1
)
else
:
data_in
=
data
if
has_proj
:
c1x1_w
=
self
.
bn_ac_conv
(
data
=
data_in
,
num_filter
=
(
num_1x1_c
+
2
*
inc
),
kernel
=
(
1
,
1
),
pad
=
(
0
,
0
),
stride
=
(
key_stride
,
key_stride
),
name
=
name
+
"_match"
)
data_o1
,
data_o2
=
fluid
.
layers
.
split
(
c1x1_w
,
num_or_sections
=
[
num_1x1_c
,
2
*
inc
],
dim
=
1
,
name
=
name
+
"_match_conv_Slice"
)
else
:
data_o1
=
data
[
0
]
data_o2
=
data
[
1
]
# MAIN
c1x1_a
=
self
.
bn_ac_conv
(
data
=
data_in
,
num_filter
=
num_1x1_a
,
kernel
=
(
1
,
1
),
pad
=
(
0
,
0
),
name
=
name
+
"_conv1"
)
c3x3_b
=
self
.
bn_ac_conv
(
data
=
c1x1_a
,
num_filter
=
num_3x3_b
,
kernel
=
(
kw
,
kh
),
pad
=
(
pw
,
ph
),
stride
=
(
key_stride
,
key_stride
),
num_group
=
G
,
name
=
name
+
"_conv2"
)
c1x1_c
=
self
.
bn_ac_conv
(
data
=
c3x3_b
,
num_filter
=
(
num_1x1_c
+
inc
),
kernel
=
(
1
,
1
),
pad
=
(
0
,
0
),
name
=
name
+
"_conv3"
)
c1x1_c1
,
c1x1_c2
=
fluid
.
layers
.
split
(
c1x1_c
,
num_or_sections
=
[
num_1x1_c
,
inc
],
dim
=
1
,
name
=
name
+
"_conv3_Slice"
)
# OUTPUTS
summ
=
fluid
.
layers
.
elementwise_add
(
x
=
data_o1
,
y
=
c1x1_c1
,
name
=
name
+
"_elewise"
)
dense
=
fluid
.
layers
.
concat
(
[
data_o2
,
c1x1_c2
],
axis
=
1
,
name
=
name
+
"_concat"
)
return
[
summ
,
dense
]
def
bn_ac_conv
(
self
,
data
,
num_filter
,
kernel
,
pad
,
stride
=
(
1
,
1
),
num_group
=
1
,
name
=
None
):
bn_ac
=
fluid
.
layers
.
batch_norm
(
input
=
data
,
act
=
'relu'
,
is_test
=
False
,
name
=
name
+
'.output.1'
,
param_attr
=
ParamAttr
(
name
=
name
+
'_bn_scale'
),
bias_attr
=
ParamAttr
(
name
+
'_bn_offset'
),
moving_mean_name
=
name
+
'_bn_mean'
,
moving_variance_name
=
name
+
'_bn_variance'
,
)
bn_ac_conv
=
fluid
.
layers
.
conv2d
(
input
=
bn_ac
,
num_filters
=
num_filter
,
filter_size
=
kernel
,
stride
=
stride
,
padding
=
pad
,
groups
=
num_group
,
act
=
None
,
bias_attr
=
False
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
))
return
bn_ac_conv
def
DPN68
():
model
=
DPN
(
layers
=
68
)
...
...
ppcls/modeling/architectures/hrnet.py
浏览文件 @
be35b7cc
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
math
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.initializer
import
MSRA
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
import
math
__all__
=
[
"HRNet"
,
"HRNet_W18_C"
,
"HRNet_W30_C"
,
"HRNet_W32_C"
,
"HRNet_W40_C"
,
"HRNet_W44_C"
,
"HRNet_W48_C"
,
"HRNet_W60_C"
,
"HRNet_W64_C"
,
"SE_HRNet_W18_C"
,
"SE_HRNet_W30_C"
,
"SE_HRNet_W32_C"
,
"SE_HRNet_W40_C"
,
"SE_HRNet_W44_C"
,
"SE_HRNet_W48_C"
,
"SE_HRNet_W60_C"
,
"SE_HRNet_W64_C"
"HRNet_W18_C"
,
"HRNet_W30_C"
,
"HRNet_W32_C"
,
"HRNet_W40_C"
,
"HRNet_W44_C"
,
"HRNet_W48_C"
,
"HRNet_W60_C"
,
"HRNet_W64_C"
,
"SE_HRNet_W18_C"
,
"SE_HRNet_W30_C"
,
"SE_HRNet_W32_C"
,
"SE_HRNet_W40_C"
,
"SE_HRNet_W44_C"
,
"SE_HRNet_W48_C"
,
"SE_HRNet_W60_C"
,
"SE_HRNet_W64_C"
,
]
class
HRNet
():
def
__init__
(
self
,
width
=
18
,
has_se
=
False
):
self
.
width
=
width
self
.
has_se
=
has_se
self
.
channels
=
{
18
:
[[
18
,
36
],
[
18
,
36
,
72
],
[
18
,
36
,
72
,
144
]],
30
:
[[
30
,
60
],
[
30
,
60
,
120
],
[
30
,
60
,
120
,
240
]],
32
:
[[
32
,
64
],
[
32
,
64
,
128
],
[
32
,
64
,
128
,
256
]],
40
:
[[
40
,
80
],
[
40
,
80
,
160
],
[
40
,
80
,
160
,
320
]],
44
:
[[
44
,
88
],
[
44
,
88
,
176
],
[
44
,
88
,
176
,
352
]],
48
:
[[
48
,
96
],
[
48
,
96
,
192
],
[
48
,
96
,
192
,
384
]],
60
:
[[
60
,
120
],
[
60
,
120
,
240
],
[
60
,
120
,
240
,
480
]],
64
:
[[
64
,
128
],
[
64
,
128
,
256
],
[
64
,
128
,
256
,
512
]]
}
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
"relu"
,
name
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
def
net
(
self
,
input
,
class_dim
=
1000
):
width
=
self
.
width
channels_2
,
channels_3
,
channels_4
=
self
.
channels
[
width
]
num_modules_2
,
num_modules_3
,
num_modules_4
=
1
,
4
,
3
self
.
_conv
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
bn_name
=
name
+
'_bn'
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
x
=
self
.
conv_bn_layer
(
input
=
input
,
filter_size
=
3
,
num_filters
=
64
,
stride
=
2
,
if_act
=
True
,
name
=
'layer1_1'
)
x
=
self
.
conv_bn_layer
(
input
=
x
,
filter_size
=
3
,
num_filters
=
64
,
stride
=
2
,
if_act
=
True
,
name
=
'layer1_2'
)
la1
=
self
.
layer1
(
x
,
name
=
'layer2'
)
tr1
=
self
.
transition_layer
([
la1
],
[
256
],
channels_2
,
name
=
'tr1'
)
st2
=
self
.
stage
(
tr1
,
num_modules_2
,
channels_2
,
name
=
'st2'
)
tr2
=
self
.
transition_layer
(
st2
,
channels_2
,
channels_3
,
name
=
'tr2'
)
st3
=
self
.
stage
(
tr2
,
num_modules_3
,
channels_3
,
name
=
'st3'
)
tr3
=
self
.
transition_layer
(
st3
,
channels_3
,
channels_4
,
name
=
'tr3'
)
st4
=
self
.
stage
(
tr3
,
num_modules_4
,
channels_4
,
name
=
'st4'
)
#classification
last_cls
=
self
.
last_cls_out
(
x
=
st4
,
name
=
'cls_head'
)
y
=
last_cls
[
0
]
last_num_filters
=
[
256
,
512
,
1024
]
for
i
in
range
(
3
):
y
=
fluid
.
layers
.
elementwise_add
(
last_cls
[
i
+
1
],
self
.
conv_bn_layer
(
input
=
y
,
filter_size
=
3
,
num_filters
=
last_num_filters
[
i
],
stride
=
2
,
name
=
'cls_head_add'
+
str
(
i
+
1
)))
def
forward
(
self
,
input
):
y
=
self
.
_conv
(
input
)
y
=
self
.
_batch_norm
(
y
)
return
y
y
=
self
.
conv_bn_layer
(
input
=
y
,
filter_size
=
1
,
num_filters
=
2048
,
stride
=
1
,
name
=
'cls_head_last_conv'
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
y
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
out
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
class_dim
,
param_attr
=
ParamAttr
(
name
=
'fc_weights'
,
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)),
bias_attr
=
ParamAttr
(
name
=
'fc_offset'
))
return
out
def
layer1
(
self
,
input
,
name
=
None
):
conv
=
input
class
Layer1
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
has_se
=
False
,
name
=
None
):
super
(
Layer1
,
self
).
__init__
()
self
.
bottleneck_block_list
=
[]
for
i
in
range
(
4
):
conv
=
self
.
bottleneck_block
(
conv
,
bottleneck_block
=
self
.
add_sublayer
(
"bb_{}_{}"
.
format
(
name
,
i
+
1
),
BottleneckBlock
(
num_channels
=
num_channels
if
i
==
0
else
256
,
num_filters
=
64
,
has_se
=
has_se
,
stride
=
1
,
downsample
=
True
if
i
==
0
else
False
,
name
=
name
+
'_'
+
str
(
i
+
1
))
name
=
name
+
'_'
+
str
(
i
+
1
)))
self
.
bottleneck_block_list
.
append
(
bottleneck_block
)
def
forward
(
self
,
input
):
conv
=
input
for
block_func
in
self
.
bottleneck_block_list
:
conv
=
block_func
(
conv
)
return
conv
def
transition_layer
(
self
,
x
,
in_channels
,
out_channels
,
name
=
None
):
class
TransitionLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels
,
name
=
None
):
super
(
TransitionLayer
,
self
).
__init__
()
num_in
=
len
(
in_channels
)
num_out
=
len
(
out_channels
)
out
=
[]
self
.
conv_bn_func_list
=
[]
for
i
in
range
(
num_out
):
residual
=
None
if
i
<
num_in
:
if
in_channels
[
i
]
!=
out_channels
[
i
]:
residual
=
self
.
conv_bn_layer
(
x
[
i
],
filter_size
=
3
,
residual
=
self
.
add_sublayer
(
"transition_{}_layer_{}"
.
format
(
name
,
i
+
1
),
ConvBNLayer
(
num_channels
=
in_channels
[
i
],
num_filters
=
out_channels
[
i
],
name
=
name
+
'_layer_'
+
str
(
i
+
1
))
out
.
append
(
residual
)
else
:
out
.
append
(
x
[
i
])
else
:
residual
=
self
.
conv_bn_layer
(
x
[
-
1
],
filter_size
=
3
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)))
else
:
residual
=
self
.
add_sublayer
(
"transition_{}_layer_{}"
.
format
(
name
,
i
+
1
),
ConvBNLayer
(
num_channels
=
in_channels
[
-
1
],
num_filters
=
out_channels
[
i
],
stride
=
2
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
))
out
.
append
(
residual
)
return
out
def
branches
(
self
,
x
,
block_num
,
channels
,
name
=
None
):
out
=
[]
for
i
in
range
(
len
(
channels
)):
residual
=
x
[
i
]
for
j
in
range
(
block_num
):
residual
=
self
.
basic_block
(
residual
,
channels
[
i
],
name
=
name
+
'_branch_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
))
out
.
append
(
residual
)
return
out
def
fuse_layers
(
self
,
x
,
channels
,
multi_scale_output
=
True
,
name
=
None
):
out
=
[]
for
i
in
range
(
len
(
channels
)
if
multi_scale_output
else
1
):
residual
=
x
[
i
]
for
j
in
range
(
len
(
channels
)):
if
j
>
i
:
y
=
self
.
conv_bn_layer
(
x
[
j
],
filter_size
=
1
,
num_filters
=
channels
[
i
],
if_act
=
False
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
))
y
=
fluid
.
layers
.
resize_nearest
(
input
=
y
,
scale
=
2
**
(
j
-
i
))
residual
=
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
y
,
act
=
None
)
elif
j
<
i
:
y
=
x
[
j
]
for
k
in
range
(
i
-
j
):
if
k
==
i
-
j
-
1
:
y
=
self
.
conv_bn_layer
(
y
,
filter_size
=
3
,
num_filters
=
channels
[
i
],
stride
=
2
,
if_act
=
False
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
)
+
'_'
+
str
(
k
+
1
))
name
=
name
+
'_layer_'
+
str
(
i
+
1
)))
self
.
conv_bn_func_list
.
append
(
residual
)
def
forward
(
self
,
input
):
outs
=
[]
for
idx
,
conv_bn_func
in
enumerate
(
self
.
conv_bn_func_list
):
if
conv_bn_func
is
None
:
outs
.
append
(
input
[
idx
])
else
:
y
=
self
.
conv_bn_layer
(
y
,
filter_size
=
3
,
num_filters
=
channels
[
j
],
stride
=
2
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
)
+
'_'
+
str
(
k
+
1
))
residual
=
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
y
,
act
=
None
)
if
idx
<
len
(
input
):
outs
.
append
(
conv_bn_func
(
input
[
idx
]))
else
:
outs
.
append
(
conv_bn_func
(
input
[
-
1
]))
return
outs
residual
=
fluid
.
layers
.
relu
(
residual
)
out
.
append
(
residual
)
return
out
def
high_resolution_module
(
self
,
x
,
channels
,
multi_scale_output
=
True
,
class
Branches
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
block_num
,
in_channels
,
out_channels
,
has_se
=
False
,
name
=
None
):
residual
=
self
.
branches
(
x
,
4
,
channels
,
name
=
name
)
out
=
self
.
fuse_layers
(
residual
,
channels
,
multi_scale_output
=
multi_scale_output
,
name
=
name
)
return
out
super
(
Branches
,
self
).
__init__
()
def
stage
(
self
,
x
,
num_modules
,
channels
,
multi_scale_output
=
True
,
name
=
None
):
out
=
x
for
i
in
range
(
num_modules
):
if
i
==
num_modules
-
1
and
multi_scale_output
==
False
:
out
=
self
.
high_resolution_module
(
out
,
channels
,
multi_scale_output
=
False
,
name
=
name
+
'_'
+
str
(
i
+
1
))
else
:
out
=
self
.
high_resolution_module
(
out
,
channels
,
name
=
name
+
'_'
+
str
(
i
+
1
))
self
.
basic_block_list
=
[]
return
out
for
i
in
range
(
len
(
out_channels
)):
self
.
basic_block_list
.
append
([])
for
j
in
range
(
block_num
):
in_ch
=
in_channels
[
i
]
if
j
==
0
else
out_channels
[
i
]
basic_block_func
=
self
.
add_sublayer
(
"bb_{}_branch_layer_{}_{}"
.
format
(
name
,
i
+
1
,
j
+
1
),
BasicBlock
(
num_channels
=
in_ch
,
num_filters
=
out_channels
[
i
],
has_se
=
has_se
,
name
=
name
+
'_branch_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
)))
self
.
basic_block_list
[
i
].
append
(
basic_block_func
)
def
last_cls_out
(
self
,
x
,
name
=
None
):
out
=
[]
num_filters_list
=
[
32
,
64
,
128
,
256
]
for
i
in
range
(
len
(
x
)):
out
.
append
(
self
.
bottleneck_block
(
input
=
x
[
i
],
num_filters
=
num_filters_list
[
i
],
name
=
name
+
'conv_'
+
str
(
i
+
1
),
downsample
=
True
))
def
forward
(
self
,
inputs
):
outs
=
[]
for
idx
,
input
in
enumerate
(
inputs
):
conv
=
input
for
basic_block_func
in
self
.
basic_block_list
[
idx
]:
conv
=
basic_block_func
(
conv
)
outs
.
append
(
conv
)
return
outs
return
out
def
basic_block
(
self
,
input
,
class
BottleneckBlock
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
has_se
,
stride
=
1
,
downsample
=
False
,
name
=
None
):
residual
=
input
conv
=
self
.
conv_bn_layer
(
input
=
input
,
filter_size
=
3
,
num_filters
=
num_filters
,
stride
=
stride
,
name
=
name
+
'_conv1'
)
conv
=
self
.
conv_bn_layer
(
input
=
conv
,
filter_size
=
3
,
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
has_se
=
has_se
self
.
downsample
=
downsample
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
if_act
=
False
,
name
=
name
+
'_conv2'
)
if
downsample
:
residual
=
self
.
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
act
=
"relu"
,
name
=
name
+
"_conv1"
,
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
if_act
=
False
,
name
=
name
+
'_downsample'
)
if
self
.
has_se
:
conv
=
self
.
squeeze_excitation
(
input
=
conv
,
filter_size
=
3
,
stride
=
stride
,
act
=
"relu"
,
name
=
name
+
"_conv2"
)
self
.
conv3
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_conv3"
)
if
self
.
downsample
:
self
.
conv_down
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_downsample"
)
if
self
.
has_se
:
self
.
se
=
SELayer
(
num_channels
=
num_filters
*
4
,
num_filters
=
num_filters
*
4
,
reduction_ratio
=
16
,
name
=
name
+
'_fc'
)
return
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
conv
,
act
=
'relu'
)
name
=
'fc'
+
name
)
def
forward
(
self
,
input
):
residual
=
input
conv1
=
self
.
conv1
(
input
)
conv2
=
self
.
conv2
(
conv1
)
conv3
=
self
.
conv3
(
conv2
)
if
self
.
downsample
:
residual
=
self
.
conv_down
(
input
)
if
self
.
has_se
:
conv3
=
self
.
se
(
conv3
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
conv3
,
y
=
residual
,
act
=
"relu"
)
return
y
def
bottleneck_block
(
self
,
input
,
class
BasicBlock
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
stride
=
1
,
has_se
=
False
,
downsample
=
False
,
name
=
None
):
residual
=
input
conv
=
self
.
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
super
(
BasicBlock
,
self
).
__init__
()
self
.
has_se
=
has_se
self
.
downsample
=
downsample
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
name
=
name
+
'_conv1'
)
conv
=
self
.
conv_bn_layer
(
input
=
conv
,
filter_size
=
3
,
num_filters
=
num_filters
,
stride
=
stride
,
name
=
name
+
'_conv2'
)
conv
=
self
.
conv_bn_layer
(
input
=
conv
,
filter_size
=
1
,
act
=
"relu"
,
name
=
name
+
"_conv1"
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
1
,
act
=
None
,
name
=
name
+
"_conv2"
)
if
self
.
downsample
:
self
.
conv_down
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
4
,
if_act
=
False
,
name
=
name
+
'_conv3'
)
if
downsample
:
residual
=
self
.
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
num_filters
*
4
,
if_act
=
False
,
name
=
name
+
'_downsample'
)
act
=
"relu"
,
name
=
name
+
"_downsample"
)
if
self
.
has_se
:
conv
=
self
.
squeeze_excitation
(
input
=
conv
,
num_
channels
=
num_filters
*
4
,
self
.
se
=
SELayer
(
num_channels
=
num_filters
,
num_
filters
=
num_filters
,
reduction_ratio
=
16
,
name
=
name
+
'_fc'
)
return
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
conv
,
act
=
'relu'
)
name
=
'fc'
+
name
)
def
forward
(
self
,
input
):
residual
=
input
conv1
=
self
.
conv1
(
input
)
conv2
=
self
.
conv2
(
conv1
)
if
self
.
downsample
:
residual
=
self
.
conv_down
(
input
)
def
squeeze_excitation
(
self
,
input
,
if
self
.
has_se
:
conv2
=
self
.
se
(
conv2
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
conv2
,
y
=
residual
,
act
=
"relu"
)
return
y
class
SELayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
reduction_ratio
,
name
=
None
):
super
(
SELayer
,
self
).
__init__
()
self
.
pool2d_gap
=
Pool2D
(
pool_type
=
'avg'
,
global_pooling
=
True
)
self
.
_num_channels
=
num_channels
med_ch
=
int
(
num_channels
/
reduction_ratio
)
stdv
=
1.0
/
math
.
sqrt
(
num_channels
*
1.0
)
self
.
squeeze
=
Linear
(
num_channels
,
reduction_ratio
,
name
=
None
):
pool
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_size
=
0
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
squeeze
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
num_channels
/
reduction_ratio
,
act
=
'relu'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
med_ch
,
act
=
"relu"
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
name
+
'_sqz_weights'
),
name
=
name
+
"_sqz_weights"
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_sqz_offset'
))
stdv
=
1.0
/
math
.
sqrt
(
squeeze
.
shape
[
1
]
*
1.0
)
excitation
=
fluid
.
layers
.
fc
(
input
=
squeeze
,
size
=
num_channels
,
act
=
'sigmoid'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
stdv
=
1.0
/
math
.
sqrt
(
med_ch
*
1.0
)
self
.
excitation
=
Linear
(
med_ch
,
num_filters
,
act
=
"sigmoid"
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
name
+
'_exc_weights'
),
name
=
name
+
"_exc_weights"
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_exc_offset'
))
scale
=
fluid
.
layers
.
elementwise_mul
(
x
=
input
,
y
=
excitation
,
axis
=
0
)
return
scale
def
conv_bn_layer
(
self
,
input
,
filter_size
,
def
forward
(
self
,
input
):
pool
=
self
.
pool2d_gap
(
input
)
pool
=
fluid
.
layers
.
reshape
(
pool
,
shape
=
[
-
1
,
self
.
_num_channels
])
squeeze
=
self
.
squeeze
(
pool
)
excitation
=
self
.
excitation
(
squeeze
)
excitation
=
fluid
.
layers
.
reshape
(
excitation
,
shape
=
[
-
1
,
self
.
_num_channels
,
1
,
1
])
out
=
input
*
excitation
return
out
class
Stage
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_modules
,
num_filters
,
stride
=
1
,
padding
=
1
,
num_groups
=
1
,
if_act
=
True
,
has_se
=
False
,
multi_scale_output
=
True
,
name
=
None
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
super
(
Stage
,
self
).
__init__
()
self
.
_num_modules
=
num_modules
self
.
stage_func_list
=
[]
for
i
in
range
(
num_modules
):
if
i
==
num_modules
-
1
and
not
multi_scale_output
:
stage_func
=
self
.
add_sublayer
(
"stage_{}_{}"
.
format
(
name
,
i
+
1
),
HighResolutionModule
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
num_groups
,
has_se
=
has_se
,
multi_scale_output
=
False
,
name
=
name
+
'_'
+
str
(
i
+
1
)))
else
:
stage_func
=
self
.
add_sublayer
(
"stage_{}_{}"
.
format
(
name
,
i
+
1
),
HighResolutionModule
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
has_se
=
has_se
,
name
=
name
+
'_'
+
str
(
i
+
1
)))
self
.
stage_func_list
.
append
(
stage_func
)
def
forward
(
self
,
input
):
out
=
input
for
idx
in
range
(
self
.
_num_modules
):
out
=
self
.
stage_func_list
[
idx
](
out
)
return
out
class
HighResolutionModule
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
has_se
=
False
,
multi_scale_output
=
True
,
name
=
None
):
super
(
HighResolutionModule
,
self
).
__init__
()
self
.
branches_func
=
Branches
(
block_num
=
4
,
in_channels
=
num_channels
,
out_channels
=
num_filters
,
has_se
=
has_se
,
name
=
name
)
self
.
fuse_func
=
FuseLayers
(
in_channels
=
num_filters
,
out_channels
=
num_filters
,
multi_scale_output
=
multi_scale_output
,
name
=
name
)
def
forward
(
self
,
input
):
out
=
self
.
branches_func
(
input
)
out
=
self
.
fuse_func
(
out
)
return
out
class
FuseLayers
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels
,
multi_scale_output
=
True
,
name
=
None
):
super
(
FuseLayers
,
self
).
__init__
()
self
.
_actual_ch
=
len
(
in_channels
)
if
multi_scale_output
else
1
self
.
_in_channels
=
in_channels
self
.
residual_func_list
=
[]
for
i
in
range
(
self
.
_actual_ch
):
for
j
in
range
(
len
(
in_channels
)):
residual_func
=
None
if
j
>
i
:
residual_func
=
self
.
add_sublayer
(
"residual_{}_layer_{}_{}"
.
format
(
name
,
i
+
1
,
j
+
1
),
ConvBNLayer
(
num_channels
=
in_channels
[
j
],
num_filters
=
out_channels
[
i
],
filter_size
=
1
,
stride
=
1
,
act
=
None
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
)))
self
.
residual_func_list
.
append
(
residual_func
)
elif
j
<
i
:
pre_num_filters
=
in_channels
[
j
]
for
k
in
range
(
i
-
j
):
if
k
==
i
-
j
-
1
:
residual_func
=
self
.
add_sublayer
(
"residual_{}_layer_{}_{}_{}"
.
format
(
name
,
i
+
1
,
j
+
1
,
k
+
1
),
ConvBNLayer
(
num_channels
=
pre_num_filters
,
num_filters
=
out_channels
[
i
],
filter_size
=
3
,
stride
=
2
,
act
=
None
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
)
+
'_'
+
str
(
k
+
1
)))
pre_num_filters
=
out_channels
[
i
]
else
:
residual_func
=
self
.
add_sublayer
(
"residual_{}_layer_{}_{}_{}"
.
format
(
name
,
i
+
1
,
j
+
1
,
k
+
1
),
ConvBNLayer
(
num_channels
=
pre_num_filters
,
num_filters
=
out_channels
[
j
],
filter_size
=
3
,
stride
=
2
,
act
=
"relu"
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
)
+
'_'
+
str
(
k
+
1
)))
pre_num_filters
=
out_channels
[
j
]
self
.
residual_func_list
.
append
(
residual_func
)
def
forward
(
self
,
input
):
outs
=
[]
residual_func_idx
=
0
for
i
in
range
(
self
.
_actual_ch
):
residual
=
input
[
i
]
for
j
in
range
(
len
(
self
.
_in_channels
)):
if
j
>
i
:
y
=
self
.
residual_func_list
[
residual_func_idx
](
input
[
j
])
residual_func_idx
+=
1
y
=
fluid
.
layers
.
resize_nearest
(
input
=
y
,
scale
=
2
**
(
j
-
i
))
residual
=
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
y
,
act
=
None
)
elif
j
<
i
:
y
=
input
[
j
]
for
k
in
range
(
i
-
j
):
y
=
self
.
residual_func_list
[
residual_func_idx
](
y
)
residual_func_idx
+=
1
residual
=
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
y
,
act
=
None
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
residual
=
layer_helper
.
append_activation
(
residual
)
outs
.
append
(
residual
)
return
outs
class
LastClsOut
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channel_list
,
has_se
,
num_filters_list
=
[
32
,
64
,
128
,
256
],
name
=
None
):
super
(
LastClsOut
,
self
).
__init__
()
self
.
func_list
=
[]
for
idx
in
range
(
len
(
num_channel_list
)):
func
=
self
.
add_sublayer
(
"conv_{}_conv_{}"
.
format
(
name
,
idx
+
1
),
BottleneckBlock
(
num_channels
=
num_channel_list
[
idx
],
num_filters
=
num_filters_list
[
idx
],
has_se
=
has_se
,
downsample
=
True
,
name
=
name
+
'conv_'
+
str
(
idx
+
1
)))
self
.
func_list
.
append
(
func
)
def
forward
(
self
,
inputs
):
outs
=
[]
for
idx
,
input
in
enumerate
(
inputs
):
out
=
self
.
func_list
[
idx
](
input
)
outs
.
append
(
out
)
return
outs
class
HRNet
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
width
=
18
,
has_se
=
False
,
class_dim
=
1000
):
super
(
HRNet
,
self
).
__init__
()
self
.
width
=
width
self
.
has_se
=
has_se
self
.
channels
=
{
18
:
[[
18
,
36
],
[
18
,
36
,
72
],
[
18
,
36
,
72
,
144
]],
30
:
[[
30
,
60
],
[
30
,
60
,
120
],
[
30
,
60
,
120
,
240
]],
32
:
[[
32
,
64
],
[
32
,
64
,
128
],
[
32
,
64
,
128
,
256
]],
40
:
[[
40
,
80
],
[
40
,
80
,
160
],
[
40
,
80
,
160
,
320
]],
44
:
[[
44
,
88
],
[
44
,
88
,
176
],
[
44
,
88
,
176
,
352
]],
48
:
[[
48
,
96
],
[
48
,
96
,
192
],
[
48
,
96
,
192
,
384
]],
60
:
[[
60
,
120
],
[
60
,
120
,
240
],
[
60
,
120
,
240
,
480
]],
64
:
[[
64
,
128
],
[
64
,
128
,
256
],
[
64
,
128
,
256
,
512
]]
}
self
.
_class_dim
=
class_dim
channels_2
,
channels_3
,
channels_4
=
self
.
channels
[
width
]
num_modules_2
,
num_modules_3
,
num_modules_4
=
1
,
4
,
3
self
.
conv_layer1_1
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
2
,
act
=
'relu'
,
name
=
"layer1_1"
)
self
.
conv_layer1_2
=
ConvBNLayer
(
num_channels
=
64
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
2
,
act
=
'relu'
,
name
=
"layer1_2"
)
self
.
la1
=
Layer1
(
num_channels
=
64
,
has_se
=
has_se
,
name
=
"layer2"
)
self
.
tr1
=
TransitionLayer
(
in_channels
=
[
256
],
out_channels
=
channels_2
,
name
=
"tr1"
)
self
.
st2
=
Stage
(
num_channels
=
channels_2
,
num_modules
=
num_modules_2
,
num_filters
=
channels_2
,
has_se
=
self
.
has_se
,
name
=
"st2"
)
self
.
tr2
=
TransitionLayer
(
in_channels
=
channels_2
,
out_channels
=
channels_3
,
name
=
"tr2"
)
self
.
st3
=
Stage
(
num_channels
=
channels_3
,
num_modules
=
num_modules_3
,
num_filters
=
channels_3
,
has_se
=
self
.
has_se
,
name
=
"st3"
)
self
.
tr3
=
TransitionLayer
(
in_channels
=
channels_3
,
out_channels
=
channels_4
,
name
=
"tr3"
)
self
.
st4
=
Stage
(
num_channels
=
channels_4
,
num_modules
=
num_modules_4
,
num_filters
=
channels_4
,
has_se
=
self
.
has_se
,
name
=
"st4"
)
# classification
num_filters_list
=
[
32
,
64
,
128
,
256
]
self
.
last_cls
=
LastClsOut
(
num_channel_list
=
channels_4
,
has_se
=
self
.
has_se
,
num_filters_list
=
num_filters_list
,
name
=
"cls_head"
,
)
last_num_filters
=
[
256
,
512
,
1024
]
self
.
cls_head_conv_list
=
[]
for
idx
in
range
(
3
):
self
.
cls_head_conv_list
.
append
(
self
.
add_sublayer
(
"cls_head_add{}"
.
format
(
idx
+
1
),
ConvBNLayer
(
num_channels
=
num_filters_list
[
idx
]
*
4
,
num_filters
=
last_num_filters
[
idx
],
filter_size
=
3
,
stride
=
2
,
name
=
"cls_head_add"
+
str
(
idx
+
1
))))
self
.
conv_last
=
ConvBNLayer
(
num_channels
=
1024
,
num_filters
=
2048
,
filter_size
=
1
,
stride
=
1
,
name
=
"cls_head_last_conv"
)
self
.
pool2d_avg
=
Pool2D
(
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
2048
*
1.0
)
self
.
out
=
Linear
(
2048
,
class_dim
,
param_attr
=
ParamAttr
(
initializer
=
MSRA
(),
name
=
name
+
'_weights'
),
bias_attr
=
False
)
bn_name
=
name
+
'_bn'
bn
=
fluid
.
layers
.
batch_norm
(
input
=
conv
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
"_scale"
,
initializer
=
fluid
.
initializer
.
Constant
(
1.0
)),
bias_attr
=
ParamAttr
(
name
=
bn_name
+
"_offset"
,
initializer
=
fluid
.
initializer
.
Constant
(
0.0
)),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
if
if_act
:
bn
=
fluid
.
layers
.
relu
(
bn
)
return
bn
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
"fc_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc_offset"
))
def
forward
(
self
,
input
):
conv1
=
self
.
conv_layer1_1
(
input
)
conv2
=
self
.
conv_layer1_2
(
conv1
)
la1
=
self
.
la1
(
conv2
)
tr1
=
self
.
tr1
([
la1
])
st2
=
self
.
st2
(
tr1
)
tr2
=
self
.
tr2
(
st2
)
st3
=
self
.
st3
(
tr2
)
tr3
=
self
.
tr3
(
st3
)
st4
=
self
.
st4
(
tr3
)
last_cls
=
self
.
last_cls
(
st4
)
y
=
last_cls
[
0
]
for
idx
in
range
(
3
):
y
=
last_cls
[
idx
+
1
]
+
self
.
cls_head_conv_list
[
idx
](
y
)
y
=
self
.
conv_last
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
fluid
.
layers
.
reshape
(
y
,
shape
=
[
0
,
-
1
])
y
=
self
.
out
(
y
)
return
y
def
HRNet_W18_C
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录