Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
bbb2c8fc
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bbb2c8fc
编写于
9月 08, 2020
作者:
littletomatodonkey
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add resnest dygraph
上级
b0b9ca0d
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
707 addition
and
0 deletion
+707
-0
ppcls/modeling/architectures/__init__.py
ppcls/modeling/architectures/__init__.py
+1
-0
ppcls/modeling/architectures/resnest.py
ppcls/modeling/architectures/resnest.py
+706
-0
未找到文件。
ppcls/modeling/architectures/__init__.py
浏览文件 @
bbb2c8fc
...
...
@@ -25,6 +25,7 @@ from .dpn import DPN68
from
.densenet
import
DenseNet121
from
.hrnet
import
HRNet_W18_C
from
.efficientnet
import
EfficientNetB0
from
.resnest
import
ResNeSt50_fast_1s1x64d
,
ResNeSt50
from
.googlenet
import
GoogLeNet
from
.mobilenet_v1
import
MobileNetV1_x0_25
,
MobileNetV1_x0_5
,
MobileNetV1_x0_75
,
MobileNetV1
from
.mobilenet_v2
import
MobileNetV2_x0_25
,
MobileNetV2_x0_5
,
MobileNetV2_x0_75
,
MobileNetV2
,
MobileNetV2_x1_5
,
MobileNetV2_x2_0
...
...
ppcls/modeling/architectures/resnest.py
0 → 100644
浏览文件 @
bbb2c8fc
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
numpy
as
np
import
paddle
import
math
import
paddle.nn
as
nn
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.regularizer
import
L2DecayRegularizer
from
paddle.fluid.initializer
import
MSRA
,
ConstantInitializer
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
__all__
=
[
"ResNeSt50_fast_1s1x64d"
,
"ResNeSt50"
]
class
ConvBNLayer
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
dilation
=
1
,
groups
=
1
,
act
=
None
,
name
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
bn_decay
=
0.0
self
.
_conv
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
dilation
=
dilation
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weight"
),
bias_attr
=
False
)
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
name
+
"_scale"
,
regularizer
=
L2DecayRegularizer
(
regularization_coeff
=
bn_decay
)),
bias_attr
=
ParamAttr
(
name
+
"_offset"
,
regularizer
=
L2DecayRegularizer
(
regularization_coeff
=
bn_decay
)),
moving_mean_name
=
name
+
"_mean"
,
moving_variance_name
=
name
+
"_variance"
)
def
forward
(
self
,
x
):
x
=
self
.
_conv
(
x
)
x
=
self
.
_batch_norm
(
x
)
return
x
class
rSoftmax
(
nn
.
Layer
):
def
__init__
(
self
,
radix
,
cardinality
):
super
(
rSoftmax
,
self
).
__init__
()
self
.
radix
=
radix
self
.
cardinality
=
cardinality
def
forward
(
self
,
x
):
cardinality
=
self
.
cardinality
radix
=
self
.
radix
batch
,
r
,
h
,
w
=
x
.
shape
if
self
.
radix
>
1
:
x
=
paddle
.
reshape
(
x
=
x
,
shape
=
[
0
,
cardinality
,
radix
,
int
(
r
*
h
*
w
/
cardinality
/
radix
)
])
x
=
paddle
.
transpose
(
x
=
x
,
perm
=
[
0
,
2
,
1
,
3
])
x
=
nn
.
functional
.
softmax
(
x
,
axis
=
1
)
x
=
paddle
.
reshape
(
x
=
x
,
shape
=
[
0
,
r
*
h
*
w
])
else
:
x
=
nn
.
functional
.
sigmoid
(
x
)
return
x
class
SplatConv
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
channels
,
kernel_size
,
stride
=
1
,
padding
=
0
,
dilation
=
1
,
groups
=
1
,
bias
=
True
,
radix
=
2
,
reduction_factor
=
4
,
rectify_avg
=
False
,
name
=
None
):
super
(
SplatConv
,
self
).
__init__
()
self
.
radix
=
radix
self
.
conv1
=
ConvBNLayer
(
num_channels
=
in_channels
,
num_filters
=
channels
*
radix
,
filter_size
=
kernel_size
,
stride
=
stride
,
groups
=
groups
*
radix
,
act
=
"relu"
,
name
=
name
+
"_splat1"
)
self
.
avg_pool2d
=
Pool2D
(
pool_type
=
'avg'
,
global_pooling
=
True
)
inter_channels
=
int
(
max
(
in_channels
*
radix
//
reduction_factor
,
32
))
# to calc gap
self
.
conv2
=
ConvBNLayer
(
num_channels
=
channels
,
num_filters
=
inter_channels
,
filter_size
=
1
,
stride
=
1
,
groups
=
groups
,
act
=
"relu"
,
name
=
name
+
"_splat2"
)
# to calc atten
self
.
conv3
=
Conv2D
(
num_channels
=
inter_channels
,
num_filters
=
channels
*
radix
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_splat_weights"
,
initializer
=
MSRA
()),
bias_attr
=
False
)
self
.
rsoftmax
=
rSoftmax
(
radix
=
radix
,
cardinality
=
groups
)
def
forward
(
self
,
x
):
x
=
self
.
conv1
(
x
)
if
self
.
radix
>
1
:
splited
=
paddle
.
split
(
x
,
num_or_sections
=
self
.
radix
,
axis
=
1
)
gap
=
paddle
.
sums
(
splited
)
else
:
gap
=
x
gap
=
self
.
avg_pool2d
(
gap
)
gap
=
self
.
conv2
(
gap
)
atten
=
self
.
conv3
(
gap
)
atten
=
self
.
rsoftmax
(
atten
)
atten
=
paddle
.
reshape
(
x
=
atten
,
shape
=
[
-
1
,
atten
.
shape
[
1
],
1
,
1
])
if
self
.
radix
>
1
:
attens
=
paddle
.
split
(
atten
,
num_or_sections
=
self
.
radix
,
axis
=
1
)
y
=
paddle
.
sums
(
[
att
*
split
for
(
att
,
split
)
in
zip
(
attens
,
splited
)])
else
:
y
=
atten
*
x
return
y
class
BottleneckBlock
(
nn
.
Layer
):
def
__init__
(
self
,
inplanes
,
planes
,
stride
=
1
,
radix
=
1
,
cardinality
=
1
,
bottleneck_width
=
64
,
avd
=
False
,
avd_first
=
False
,
dilation
=
1
,
is_first
=
False
,
rectify_avg
=
False
,
last_gamma
=
False
,
avg_down
=
False
,
name
=
None
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
inplanes
=
inplanes
self
.
planes
=
planes
self
.
stride
=
stride
self
.
radix
=
radix
self
.
cardinality
=
cardinality
self
.
avd
=
avd
self
.
avd_first
=
avd_first
self
.
dilation
=
dilation
self
.
is_first
=
is_first
self
.
rectify_avg
=
rectify_avg
self
.
last_gamma
=
last_gamma
self
.
avg_down
=
avg_down
group_width
=
int
(
planes
*
(
bottleneck_width
/
64.
))
*
cardinality
self
.
conv1
=
ConvBNLayer
(
num_channels
=
self
.
inplanes
,
num_filters
=
group_width
,
filter_size
=
1
,
stride
=
1
,
groups
=
1
,
act
=
"relu"
,
name
=
name
+
"_conv1"
)
if
avd
and
avd_first
and
(
stride
>
1
or
is_first
):
self
.
avg_pool2d_1
=
Pool2D
(
pool_size
=
3
,
pool_stride
=
stride
,
pool_padding
=
1
,
pool_type
=
"avg"
)
if
radix
>=
1
:
self
.
conv2
=
SplatConv
(
in_channels
=
group_width
,
channels
=
group_width
,
kernel_size
=
3
,
stride
=
1
,
padding
=
dilation
,
dilation
=
dilation
,
groups
=
cardinality
,
bias
=
False
,
radix
=
radix
,
rectify_avg
=
rectify_avg
,
name
=
name
+
"_splatconv"
)
else
:
self
.
conv2
=
ConvBNLayer
(
num_channels
=
group_width
,
num_filters
=
group_width
,
filter_size
=
3
,
stride
=
1
,
dilation
=
dialtion
,
groups
=
cardinality
,
act
=
"relu"
,
name
=
name
+
"_conv2"
)
if
avd
and
avd_first
==
False
and
(
stride
>
1
or
is_first
):
self
.
avg_pool2d_2
=
Pool2D
(
pool_size
=
3
,
pool_stride
=
stride
,
pool_padding
=
1
,
pool_type
=
"avg"
)
self
.
conv3
=
ConvBNLayer
(
num_channels
=
group_width
,
num_filters
=
planes
*
4
,
filter_size
=
1
,
stride
=
1
,
groups
=
1
,
act
=
None
,
name
=
name
+
"_conv3"
)
if
stride
!=
1
or
self
.
inplanes
!=
self
.
planes
*
4
:
if
avg_down
:
if
dilation
==
1
:
self
.
avg_pool2d_3
=
Pool2D
(
pool_size
=
stride
,
pool_stride
=
stride
,
pool_type
=
"avg"
,
ceil_mode
=
True
)
else
:
self
.
avg_pool2d_3
=
Pool2D
(
pool_size
=
1
,
pool_stride
=
1
,
pool_type
=
"avg"
,
ceil_mode
=
True
)
self
.
conv4
=
Conv2D
(
num_channels
=
self
.
inplanes
,
num_filters
=
planes
*
4
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
groups
=
1
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
,
initializer
=
MSRA
()),
bias_attr
=
False
)
else
:
self
.
conv4
=
Conv2D
(
num_channels
=
self
.
inplanes
,
num_filters
=
planes
*
4
,
filter_size
=
1
,
stride
=
stride
,
padding
=
0
,
groups
=
1
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_shortcut_weights"
,
initializer
=
MSRA
()),
bias_attr
=
False
)
bn_decay
=
0.0
self
.
_batch_norm
=
BatchNorm
(
planes
*
4
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_shortcut_scale"
,
regularizer
=
L2DecayRegularizer
(
regularization_coeff
=
bn_decay
)),
bias_attr
=
ParamAttr
(
name
+
"_shortcut_offset"
,
regularizer
=
L2DecayRegularizer
(
regularization_coeff
=
bn_decay
)),
moving_mean_name
=
name
+
"_shortcut_mean"
,
moving_variance_name
=
name
+
"_shortcut_variance"
)
def
forward
(
self
,
x
):
short
=
x
x
=
self
.
conv1
(
x
)
if
self
.
avd
and
self
.
avd_first
and
(
self
.
stride
>
1
or
self
.
is_first
):
x
=
self
.
avg_pool2d_1
(
x
)
x
=
self
.
conv2
(
x
)
if
self
.
avd
and
self
.
avd_first
==
False
and
(
self
.
stride
>
1
or
self
.
is_first
):
x
=
self
.
avg_pool2d_2
(
x
)
x
=
self
.
conv3
(
x
)
if
self
.
stride
!=
1
or
self
.
inplanes
!=
self
.
planes
*
4
:
if
self
.
avg_down
:
short
=
self
.
avg_pool2d_3
(
short
)
short
=
self
.
conv4
(
short
)
short
=
self
.
_batch_norm
(
short
)
y
=
paddle
.
elementwise_add
(
x
=
short
,
y
=
x
,
act
=
"relu"
)
return
y
class
ResNeStLayer
(
nn
.
Layer
):
def
__init__
(
self
,
inplanes
,
planes
,
blocks
,
radix
,
cardinality
,
bottleneck_width
,
avg_down
,
avd
,
avd_first
,
rectify_avg
,
last_gamma
,
stride
=
1
,
dilation
=
1
,
is_first
=
True
,
name
=
None
):
super
(
ResNeStLayer
,
self
).
__init__
()
self
.
inplanes
=
inplanes
self
.
planes
=
planes
self
.
blocks
=
blocks
self
.
radix
=
radix
self
.
cardinality
=
cardinality
self
.
bottleneck_width
=
bottleneck_width
self
.
avg_down
=
avg_down
self
.
avd
=
avd
self
.
avd_first
=
avd_first
self
.
rectify_avg
=
rectify_avg
self
.
last_gamma
=
last_gamma
self
.
is_first
=
is_first
if
dilation
==
1
or
dilation
==
2
:
bottleneck_func
=
self
.
add_sublayer
(
name
+
"_bottleneck_0"
,
BottleneckBlock
(
inplanes
=
self
.
inplanes
,
planes
=
planes
,
stride
=
stride
,
radix
=
radix
,
cardinality
=
cardinality
,
bottleneck_width
=
bottleneck_width
,
avg_down
=
self
.
avg_down
,
avd
=
avd
,
avd_first
=
avd_first
,
dilation
=
1
,
is_first
=
is_first
,
rectify_avg
=
rectify_avg
,
last_gamma
=
last_gamma
,
name
=
name
+
"_bottleneck_0"
))
elif
dilation
==
4
:
bottleneck_func
=
self
.
add_sublayer
(
name
+
"_bottleneck_0"
,
BottleneckBlock
(
inplanes
=
self
.
inplanes
,
planes
=
planes
,
stride
=
stride
,
radix
=
radix
,
cardinality
=
cardinality
,
bottleneck_width
=
bottleneck_width
,
avg_down
=
self
.
avg_down
,
avd
=
avd
,
avd_first
=
avd_first
,
dilation
=
2
,
is_first
=
is_first
,
rectify_avg
=
rectify_avg
,
last_gamma
=
last_gamma
,
name
=
name
+
"_bottleneck_0"
))
else
:
raise
RuntimeError
(
"=>unknown dilation size"
)
self
.
inplanes
=
planes
*
4
self
.
bottleneck_block_list
=
[
bottleneck_func
]
for
i
in
range
(
1
,
blocks
):
name
=
name
+
"_bottleneck_"
+
str
(
i
)
bottleneck_func
=
self
.
add_sublayer
(
name
,
BottleneckBlock
(
inplanes
=
self
.
inplanes
,
planes
=
planes
,
radix
=
radix
,
cardinality
=
cardinality
,
bottleneck_width
=
bottleneck_width
,
avg_down
=
self
.
avg_down
,
avd
=
avd
,
avd_first
=
avd_first
,
dilation
=
dilation
,
rectify_avg
=
rectify_avg
,
last_gamma
=
last_gamma
,
name
=
name
))
self
.
bottleneck_block_list
.
append
(
bottleneck_func
)
def
forward
(
self
,
x
):
for
bottleneck_block
in
self
.
bottleneck_block_list
:
x
=
bottleneck_block
(
x
)
return
x
class
ResNeSt
(
nn
.
Layer
):
def
__init__
(
self
,
layers
,
radix
=
1
,
groups
=
1
,
bottleneck_width
=
64
,
dilated
=
False
,
dilation
=
1
,
deep_stem
=
False
,
stem_width
=
64
,
avg_down
=
False
,
rectify_avg
=
False
,
avd
=
False
,
avd_first
=
False
,
final_drop
=
0.0
,
last_gamma
=
False
,
class_dim
=
1000
):
super
(
ResNeSt
,
self
).
__init__
()
self
.
cardinality
=
groups
self
.
bottleneck_width
=
bottleneck_width
# ResNet-D params
self
.
inplanes
=
stem_width
*
2
if
deep_stem
else
64
self
.
avg_down
=
avg_down
self
.
last_gamma
=
last_gamma
# ResNeSt params
self
.
radix
=
radix
self
.
avd
=
avd
self
.
avd_first
=
avd_first
self
.
deep_stem
=
deep_stem
self
.
stem_width
=
stem_width
self
.
layers
=
layers
self
.
final_drop
=
final_drop
self
.
dilated
=
dilated
self
.
dilation
=
dilation
self
.
rectify_avg
=
rectify_avg
if
self
.
deep_stem
:
self
.
stem
=
nn
.
Sequential
(
(
"conv1"
,
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
stem_width
,
filter_size
=
3
,
stride
=
2
,
act
=
"relu"
,
name
=
"conv1"
)),
(
"conv2"
,
ConvBNLayer
(
num_channels
=
stem_width
,
num_filters
=
stem_width
,
filter_size
=
3
,
stride
=
1
,
act
=
"relu"
,
name
=
"conv2"
)),
(
"conv3"
,
ConvBNLayer
(
num_channels
=
stem_width
,
num_filters
=
stem_width
*
2
,
filter_size
=
3
,
stride
=
1
,
act
=
"relu"
,
name
=
"conv3"
)))
else
:
self
.
stem
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
stem_width
,
filter_size
=
7
,
stride
=
2
,
act
=
"relu"
,
name
=
"conv1"
)
self
.
max_pool2d
=
Pool2D
(
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
"max"
)
self
.
layer1
=
ResNeStLayer
(
inplanes
=
self
.
stem_width
*
2
if
self
.
deep_stem
else
self
.
stem_width
,
planes
=
64
,
blocks
=
self
.
layers
[
0
],
radix
=
radix
,
cardinality
=
self
.
cardinality
,
bottleneck_width
=
bottleneck_width
,
avg_down
=
self
.
avg_down
,
avd
=
avd
,
avd_first
=
avd_first
,
rectify_avg
=
rectify_avg
,
last_gamma
=
last_gamma
,
stride
=
1
,
dilation
=
1
,
is_first
=
False
,
name
=
"layer1"
)
# return
self
.
layer2
=
ResNeStLayer
(
inplanes
=
256
,
planes
=
128
,
blocks
=
self
.
layers
[
1
],
radix
=
radix
,
cardinality
=
self
.
cardinality
,
bottleneck_width
=
bottleneck_width
,
avg_down
=
self
.
avg_down
,
avd
=
avd
,
avd_first
=
avd_first
,
rectify_avg
=
rectify_avg
,
last_gamma
=
last_gamma
,
stride
=
2
,
name
=
"layer2"
)
if
self
.
dilated
or
self
.
dilation
==
4
:
self
.
layer3
=
ResNeStLayer
(
inplanes
=
512
,
planes
=
256
,
blocks
=
self
.
layers
[
2
],
radix
=
radix
,
cardinality
=
self
.
cardinality
,
bottleneck_width
=
bottleneck_width
,
avg_down
=
self
.
avg_down
,
avd
=
avd
,
avd_first
=
avd_first
,
rectify_avg
=
rectify_avg
,
last_gamma
=
last_gamma
,
stride
=
1
,
dilation
=
2
,
name
=
"layer3"
)
self
.
layer4
=
ResNeStLayer
(
inplanes
=
1024
,
planes
=
512
,
blocks
=
self
.
layers
[
3
],
radix
=
radix
,
cardinality
=
self
.
cardinality
,
bottleneck_width
=
bottleneck_width
,
avg_down
=
self
.
avg_down
,
avd
=
avd
,
avd_first
=
avd_first
,
rectify_avg
=
rectify_avg
,
last_gamma
=
last_gamma
,
stride
=
1
,
dilation
=
4
,
name
=
"layer4"
)
elif
self
.
dilation
==
2
:
self
.
layer3
=
ResNeStLayer
(
inplanes
=
512
,
planes
=
256
,
blocks
=
self
.
layers
[
2
],
radix
=
radix
,
cardinality
=
self
.
cardinality
,
bottleneck_width
=
bottleneck_width
,
avg_down
=
self
.
avg_down
,
avd
=
avd
,
avd_first
=
avd_first
,
rectify_avg
=
rectify_avg
,
last_gamma
=
last_gamma
,
stride
=
2
,
dilation
=
1
,
name
=
"layer3"
)
self
.
layer4
=
ResNeStLayer
(
inplanes
=
1024
,
planes
=
512
,
blocks
=
self
.
layers
[
3
],
radix
=
radix
,
cardinality
=
self
.
cardinality
,
bottleneck_width
=
bottleneck_width
,
avg_down
=
self
.
avg_down
,
avd
=
avd
,
avd_first
=
avd_first
,
rectify_avg
=
rectify_avg
,
last_gamma
=
last_gamma
,
stride
=
1
,
dilation
=
2
,
name
=
"layer4"
)
else
:
self
.
layer3
=
ResNeStLayer
(
inplanes
=
512
,
planes
=
256
,
blocks
=
self
.
layers
[
2
],
radix
=
radix
,
cardinality
=
self
.
cardinality
,
bottleneck_width
=
bottleneck_width
,
avg_down
=
self
.
avg_down
,
avd
=
avd
,
avd_first
=
avd_first
,
rectify_avg
=
rectify_avg
,
last_gamma
=
last_gamma
,
stride
=
2
,
name
=
"layer3"
)
self
.
layer4
=
ResNeStLayer
(
inplanes
=
1024
,
planes
=
512
,
blocks
=
self
.
layers
[
3
],
radix
=
radix
,
cardinality
=
self
.
cardinality
,
bottleneck_width
=
bottleneck_width
,
avg_down
=
self
.
avg_down
,
avd
=
avd
,
avd_first
=
avd_first
,
rectify_avg
=
rectify_avg
,
last_gamma
=
last_gamma
,
stride
=
2
,
name
=
"layer4"
)
self
.
pool2d_avg
=
Pool2D
(
pool_type
=
'avg'
,
global_pooling
=
True
)
self
.
out_channels
=
2048
stdv
=
1.0
/
math
.
sqrt
(
self
.
out_channels
*
1.0
)
self
.
out
=
Linear
(
self
.
out_channels
,
class_dim
,
param_attr
=
ParamAttr
(
initializer
=
nn
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
"fc_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc_offset"
))
def
forward
(
self
,
x
):
x
=
self
.
stem
(
x
)
x
=
self
.
max_pool2d
(
x
)
x
=
self
.
layer1
(
x
)
x
=
self
.
layer2
(
x
)
x
=
self
.
layer3
(
x
)
x
=
self
.
layer4
(
x
)
x
=
self
.
pool2d_avg
(
x
)
x
=
paddle
.
reshape
(
x
,
shape
=
[
-
1
,
self
.
out_channels
])
x
=
self
.
out
(
x
)
return
x
def
ResNeSt50_fast_1s1x64d
(
**
args
):
model
=
ResNeSt
(
layers
=
[
3
,
4
,
6
,
3
],
radix
=
1
,
groups
=
1
,
bottleneck_width
=
64
,
deep_stem
=
True
,
stem_width
=
32
,
avg_down
=
True
,
avd
=
True
,
avd_first
=
True
,
final_drop
=
0.0
,
**
args
)
return
model
def
ResNeSt50
(
**
args
):
model
=
ResNeSt
(
layers
=
[
3
,
4
,
6
,
3
],
radix
=
2
,
groups
=
1
,
bottleneck_width
=
64
,
deep_stem
=
True
,
stem_width
=
32
,
avg_down
=
True
,
avd
=
True
,
avd_first
=
False
,
final_drop
=
0.0
,
**
args
)
return
model
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录