提交 b574a47d 编写于 作者: H HydrogenSulfate

update bash scripts and related python file to develop version

上级 d7670528
......@@ -31,7 +31,7 @@ op:
#Fetch结果列表,以client_config中fetch_var的alias_name为准
fetch_list: ["features"]
det:
concurrency: 1
local_service_conf:
......
nohup python3 -m paddle_serving_server.serve \
--model ../../models/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving \
--port 9293 >>log_mainbody_detection.txt 1&>2 &
gpu_id=$1
nohup python3 -m paddle_serving_server.serve \
--model ../../models/general_PPLCNet_x2_5_lite_v1.0_serving \
--port 9294 >>log_feature_extraction.txt 1&>2 &
# PP-ShiTu CPP serving script
if [[ -n "${gpu_id}" ]]; then
nohup python3.7 -m paddle_serving_server.serve \
--model ../../models/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving ../../models/general_PPLCNet_x2_5_lite_v1.0_serving \
--op GeneralPicodetOp GeneralFeatureExtractOp \
--port 9400 --gpu_id="${gpu_id}" > log_PPShiTu.txt 2>&1 &
else
nohup python3.7 -m paddle_serving_server.serve \
--model ../../models/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving ../../models/general_PPLCNet_x2_5_lite_v1.0_serving \
--op GeneralPicodetOp GeneralFeatureExtractOp \
--port 9400 > log_PPShiTu.txt 2>&1 &
fi
\ No newline at end of file
......@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import numpy as np
from paddle_serving_client import Client
......@@ -22,181 +21,101 @@ import faiss
import os
import pickle
class MainbodyDetect():
"""
pp-shitu mainbody detect.
include preprocess, process, postprocess
return detect results
Attention: Postprocess include num limit and box filter; no nms
"""
def __init__(self):
self.preprocess = DetectionSequential([
DetectionFile2Image(), DetectionNormalize(
[0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True),
DetectionResize(
(640, 640), False, interpolation=2), DetectionTranspose(
(2, 0, 1))
])
self.client = Client()
self.client.load_client_config(
"../../models/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_client/serving_client_conf.prototxt"
)
self.client.connect(['127.0.0.1:9293'])
self.max_det_result = 5
self.conf_threshold = 0.2
def predict(self, imgpath):
im, im_info = self.preprocess(imgpath)
im_shape = np.array(im.shape[1:]).reshape(-1)
scale_factor = np.array(list(im_info['scale_factor'])).reshape(-1)
fetch_map = self.client.predict(
feed={
"image": im,
"im_shape": im_shape,
"scale_factor": scale_factor,
},
fetch=["save_infer_model/scale_0.tmp_1"],
batch=False)
return self.postprocess(fetch_map, imgpath)
def postprocess(self, fetch_map, imgpath):
#1. get top max_det_result
det_results = fetch_map["save_infer_model/scale_0.tmp_1"]
if len(det_results) > self.max_det_result:
boxes_reserved = fetch_map[
"save_infer_model/scale_0.tmp_1"][:self.max_det_result]
else:
boxes_reserved = det_results
#2. do conf threshold
boxes_list = []
for i in range(boxes_reserved.shape[0]):
if (boxes_reserved[i, 1]) > self.conf_threshold:
boxes_list.append(boxes_reserved[i, :])
#3. add origin image box
origin_img = cv2.imread(imgpath)
boxes_list.append(
np.array([0, 1.0, 0, 0, origin_img.shape[1], origin_img.shape[0]]))
return np.array(boxes_list)
class ObjectRecognition():
"""
pp-shitu object recognion for all objects detected by MainbodyDetect.
include preprocess, process, postprocess
preprocess include preprocess for each image and batching.
Batch process
postprocess include retrieval and nms
"""
def __init__(self):
self.client = Client()
self.client.load_client_config(
"../../models/general_PPLCNet_x2_5_lite_v1.0_client/serving_client_conf.prototxt"
)
self.client.connect(["127.0.0.1:9294"])
self.seq = Sequential([
BGR2RGB(), Resize((224, 224)), Div(255),
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225],
False), Transpose((2, 0, 1))
])
self.searcher, self.id_map = self.init_index()
self.rec_nms_thresold = 0.05
self.rec_score_thres = 0.5
self.feature_normalize = True
self.return_k = 1
def init_index(self):
index_dir = "../../drink_dataset_v1.0/index"
assert os.path.exists(os.path.join(
index_dir, "vector.index")), "vector.index not found ..."
assert os.path.exists(os.path.join(
index_dir, "id_map.pkl")), "id_map.pkl not found ... "
searcher = faiss.read_index(os.path.join(index_dir, "vector.index"))
with open(os.path.join(index_dir, "id_map.pkl"), "rb") as fd:
id_map = pickle.load(fd)
return searcher, id_map
def predict(self, det_boxes, imgpath):
#1. preprocess
batch_imgs = []
origin_img = cv2.imread(imgpath)
for i in range(det_boxes.shape[0]):
box = det_boxes[i]
x1, y1, x2, y2 = [int(x) for x in box[2:]]
cropped_img = origin_img[y1:y2, x1:x2, :].copy()
tmp = self.seq(cropped_img)
batch_imgs.append(tmp)
batch_imgs = np.array(batch_imgs)
#2. process
fetch_map = self.client.predict(
feed={"x": batch_imgs}, fetch=["features"], batch=True)
batch_features = fetch_map["features"]
#3. postprocess
if self.feature_normalize:
feas_norm = np.sqrt(
np.sum(np.square(batch_features), axis=1, keepdims=True))
batch_features = np.divide(batch_features, feas_norm)
scores, docs = self.searcher.search(batch_features, self.return_k)
results = []
for i in range(scores.shape[0]):
pred = {}
if scores[i][0] >= self.rec_score_thres:
pred["bbox"] = [int(x) for x in det_boxes[i, 2:]]
pred["rec_docs"] = self.id_map[docs[i][0]].split()[1]
pred["rec_scores"] = scores[i][0]
results.append(pred)
return self.nms_to_rec_results(results)
def nms_to_rec_results(self, results):
filtered_results = []
x1 = np.array([r["bbox"][0] for r in results]).astype("float32")
y1 = np.array([r["bbox"][1] for r in results]).astype("float32")
x2 = np.array([r["bbox"][2] for r in results]).astype("float32")
y2 = np.array([r["bbox"][3] for r in results]).astype("float32")
scores = np.array([r["rec_scores"] for r in results])
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
while order.size > 0:
i = order[0]
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= self.rec_nms_thresold)[0]
order = order[inds + 1]
filtered_results.append(results[i])
return filtered_results
rec_nms_thresold = 0.05
rec_score_thres = 0.5
feature_normalize = True
return_k = 1
index_dir = "../../drink_dataset_v1.0/index"
def init_index(index_dir):
assert os.path.exists(os.path.join(
index_dir, "vector.index")), "vector.index not found ..."
assert os.path.exists(os.path.join(
index_dir, "id_map.pkl")), "id_map.pkl not found ... "
searcher = faiss.read_index(os.path.join(index_dir, "vector.index"))
with open(os.path.join(index_dir, "id_map.pkl"), "rb") as fd:
id_map = pickle.load(fd)
return searcher, id_map
#get box
def nms_to_rec_results(results, thresh=0.1):
filtered_results = []
x1 = np.array([r["bbox"][0] for r in results]).astype("float32")
y1 = np.array([r["bbox"][1] for r in results]).astype("float32")
x2 = np.array([r["bbox"][2] for r in results]).astype("float32")
y2 = np.array([r["bbox"][3] for r in results]).astype("float32")
scores = np.array([r["rec_scores"] for r in results])
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
while order.size > 0:
i = order[0]
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
filtered_results.append(results[i])
return filtered_results
def postprocess(fetch_dict, feature_normalize, det_boxes, searcher, id_map,
return_k, rec_score_thres, rec_nms_thresold):
batch_features = fetch_dict["features"]
#do feature norm
if feature_normalize:
feas_norm = np.sqrt(
np.sum(np.square(batch_features), axis=1, keepdims=True))
batch_features = np.divide(batch_features, feas_norm)
scores, docs = searcher.search(batch_features, return_k)
results = []
for i in range(scores.shape[0]):
pred = {}
if scores[i][0] >= rec_score_thres:
pred["bbox"] = [int(x) for x in det_boxes[i, 2:]]
pred["rec_docs"] = id_map[docs[i][0]].split()[1]
pred["rec_scores"] = scores[i][0]
results.append(pred)
#do nms
results = nms_to_rec_results(results, rec_nms_thresold)
return results
#do client
if __name__ == "__main__":
det = MainbodyDetect()
rec = ObjectRecognition()
#1. get det_results
imgpath = "../../drink_dataset_v1.0/test_images/001.jpeg"
det_results = det.predict(imgpath)
#2. get rec_results
rec_results = rec.predict(det_results, imgpath)
print(rec_results)
client = Client()
client.load_client_config([
"../../models/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_client",
"../../models/general_PPLCNet_x2_5_lite_v1.0_client"
])
client.connect(['127.0.0.1:9400'])
im = cv2.imread("../../drink_dataset_v1.0/test_images/001.jpeg")
im_shape = np.array(im.shape[:2]).reshape(-1)
fetch_map = client.predict(
feed={"image": im,
"im_shape": im_shape},
fetch=["features", "boxes"],
batch=False)
#add retrieval procedure
det_boxes = fetch_map["boxes"]
searcher, id_map = init_index(index_dir)
results = postprocess(fetch_map, feature_normalize, det_boxes, searcher,
id_map, return_k, rec_score_thres, rec_nms_thresold)
print(results)
#run cls server:
nohup python3 -m paddle_serving_server.serve --model ResNet50_vd_serving --port 9292 &
gpu_id=$1
# ResNet50_vd CPP serving script
if [[ -n "${gpu_id}" ]]; then
nohup python3.7 -m paddle_serving_server.serve \
--model ./ResNet50_vd_serving \
--op GeneralClasOp \
--port 9292 &
else
nohup python3.7 -m paddle_serving_server.serve \
--model ./ResNet50_vd_serving \
--op GeneralClasOp \
--port 9292 --gpu_id="${gpu_id}" &
fi
\ No newline at end of file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册