提交 b31d67ea 编写于 作者: H HydrogenSulfate

add flexible configuration for disable det model(C++)

上级 6cf954e1
...@@ -37,17 +37,14 @@ ...@@ -37,17 +37,14 @@
using namespace std; using namespace std;
using namespace cv; using namespace cv;
DEFINE_string(config, DEFINE_string(config, "", "Path of yaml file");
"", "Path of yaml file"); DEFINE_string(c, "", "Path of yaml file");
DEFINE_string(c,
"", "Path of yaml file");
void DetPredictImage(const std::vector <cv::Mat> &batch_imgs, void DetPredictImage(const std::vector<cv::Mat> &batch_imgs,
const std::vector <std::string> &all_img_paths, const std::vector<std::string> &all_img_paths,
const int batch_size, Detection::ObjectDetector *det, const int batch_size, Detection::ObjectDetector *det,
std::vector <Detection::ObjectResult> &im_result, std::vector<Detection::ObjectResult> &im_result,
std::vector<int> &im_bbox_num, std::vector<double> &det_t, std::vector<double> &det_t, const bool visual_det = false,
const bool visual_det = false,
const bool run_benchmark = false, const bool run_benchmark = false,
const std::string &output_dir = "output") { const std::string &output_dir = "output") {
int steps = ceil(float(all_img_paths.size()) / batch_size); int steps = ceil(float(all_img_paths.size()) / batch_size);
...@@ -65,7 +62,7 @@ void DetPredictImage(const std::vector <cv::Mat> &batch_imgs, ...@@ -65,7 +62,7 @@ void DetPredictImage(const std::vector <cv::Mat> &batch_imgs,
// } // }
// Store all detected result // Store all detected result
std::vector <Detection::ObjectResult> result; std::vector<Detection::ObjectResult> result;
std::vector<int> bbox_num; std::vector<int> bbox_num;
std::vector<double> det_times; std::vector<double> det_times;
bool is_rbox = false; bool is_rbox = false;
...@@ -104,7 +101,7 @@ void DetPredictImage(const std::vector <cv::Mat> &batch_imgs, ...@@ -104,7 +101,7 @@ void DetPredictImage(const std::vector <cv::Mat> &batch_imgs,
} }
} }
} }
im_bbox_num.push_back(detect_num); // im_bbox_num.push_back(detect_num);
item_start_idx = item_start_idx + bbox_num[i]; item_start_idx = item_start_idx + bbox_num[i];
// Visualization result // Visualization result
...@@ -136,16 +133,17 @@ void DetPredictImage(const std::vector <cv::Mat> &batch_imgs, ...@@ -136,16 +133,17 @@ void DetPredictImage(const std::vector <cv::Mat> &batch_imgs,
} }
void PrintResult(std::string &img_path, void PrintResult(std::string &img_path,
std::vector <Detection::ObjectResult> &det_result, std::vector<Detection::ObjectResult> &det_result,
std::vector<int> &indeices, VectorSearch &vector_search, std::vector<int> &indeices, VectorSearch *vector_search_ptr,
SearchResult &search_result) { SearchResult &search_result) {
printf("%s:\n", img_path.c_str()); printf("%s:\n", img_path.c_str());
for (int i = 0; i < indeices.size(); ++i) { for (int i = 0; i < indeices.size(); ++i) {
int t = indeices[i]; int t = indeices[i];
printf("\tresult%d: bbox[%d, %d, %d, %d], score: %f, label: %s\n", i, printf(
"\tresult%d: bbox[%d, %d, %d, %d], score: %f, label: %s\n", i,
det_result[t].rect[0], det_result[t].rect[1], det_result[t].rect[2], det_result[t].rect[0], det_result[t].rect[1], det_result[t].rect[2],
det_result[t].rect[3], det_result[t].confidence, det_result[t].rect[3], det_result[t].confidence,
vector_search.GetLabel(search_result.I[search_result.return_k * t]) vector_search_ptr->GetLabel(search_result.I[search_result.return_k * t])
.c_str()); .c_str());
} }
} }
...@@ -168,10 +166,21 @@ int main(int argc, char **argv) { ...@@ -168,10 +166,21 @@ int main(int argc, char **argv) {
YamlConfig config(yaml_path); YamlConfig config(yaml_path);
config.PrintConfigInfo(); config.PrintConfigInfo();
// initialize detector, rec_Model, vector_search // initialize detector
Feature::FeatureExtracter feature_extracter(config.config_file); Detection::ObjectDetector *detector_ptr = nullptr;
Detection::ObjectDetector detector(config.config_file); if (config.config_file["Global"]["det_inference_model_dir"].Type() !=
VectorSearch searcher(config.config_file); YAML::NodeType::Null &&
!config.config_file["Global"]["det_inference_model_dir"]
.as<std::string>()
.empty()) {
detector_ptr = new Detection::ObjectDetector(config.config_file);
}
// initialize feature_extractor
Feature::FeatureExtracter *feature_extracter_ptr =
new Feature::FeatureExtracter(config.config_file);
// initialize vector_searcher
VectorSearch *vector_searcher_ptr = new VectorSearch(config.config_file);
// config // config
const int batch_size = config.config_file["Global"]["batch_size"].as<int>(); const int batch_size = config.config_file["Global"]["batch_size"].as<int>();
...@@ -196,9 +205,9 @@ int main(int argc, char **argv) { ...@@ -196,9 +205,9 @@ int main(int argc, char **argv) {
// load image_file_path // load image_file_path
std::string path = std::string path =
config.config_file["Global"]["infer_imgs"].as<std::string>(); config.config_file["Global"]["infer_imgs"].as<std::string>();
std::vector <std::string> img_files_list; std::vector<std::string> img_files_list;
if (cv::utils::fs::isDirectory(path)) { if (cv::utils::fs::isDirectory(path)) {
std::vector <cv::String> filenames; std::vector<cv::String> filenames;
cv::glob(path, filenames); cv::glob(path, filenames);
for (auto f : filenames) { for (auto f : filenames) {
img_files_list.push_back(f); img_files_list.push_back(f);
...@@ -213,11 +222,11 @@ int main(int argc, char **argv) { ...@@ -213,11 +222,11 @@ int main(int argc, char **argv) {
std::vector<double> search_times = {0, 0, 0}; std::vector<double> search_times = {0, 0, 0};
int instance_num = 0; int instance_num = 0;
// for read images // for read images
std::vector <cv::Mat> batch_imgs; std::vector<cv::Mat> batch_imgs;
std::vector <std::string> img_paths; std::vector<std::string> img_paths;
// for detection // for detection
std::vector <Detection::ObjectResult> det_result; std::vector<Detection::ObjectResult> det_result;
std::vector<int> det_bbox_num;
// for vector search // for vector search
std::vector<float> features; std::vector<float> features;
std::vector<float> feature; std::vector<float> feature;
...@@ -243,9 +252,11 @@ int main(int argc, char **argv) { ...@@ -243,9 +252,11 @@ int main(int argc, char **argv) {
batch_imgs.push_back(srcimg); batch_imgs.push_back(srcimg);
img_paths.push_back(img_path); img_paths.push_back(img_path);
// step1: get all detection results // step1: get all detection results if enable detector
DetPredictImage(batch_imgs, img_paths, batch_size, &detector, det_result, if (detector_ptr != nullptr) {
det_bbox_num, det_times, visual_det, false); DetPredictImage(batch_imgs, img_paths, batch_size, detector_ptr,
det_result, det_times, visual_det, false);
}
// select max_det_results bbox // select max_det_results bbox
if (det_result.size() > max_det_results) { if (det_result.size() > max_det_results) {
...@@ -257,7 +268,6 @@ int main(int argc, char **argv) { ...@@ -257,7 +268,6 @@ int main(int argc, char **argv) {
Detection::ObjectResult result_whole_img = { Detection::ObjectResult result_whole_img = {
{0, 0, srcimg.cols - 1, srcimg.rows - 1}, 0, 1.0}; {0, 0, srcimg.cols - 1, srcimg.rows - 1}, 0, 1.0};
det_result.push_back(result_whole_img); det_result.push_back(result_whole_img);
det_bbox_num[0] = det_result.size() + 1;
// step3: extract feature for all boxes in an inmage // step3: extract feature for all boxes in an inmage
SearchResult search_result; SearchResult search_result;
...@@ -266,20 +276,22 @@ int main(int argc, char **argv) { ...@@ -266,20 +276,22 @@ int main(int argc, char **argv) {
int h = det_result[j].rect[3] - det_result[j].rect[1]; int h = det_result[j].rect[3] - det_result[j].rect[1];
cv::Rect rect(det_result[j].rect[0], det_result[j].rect[1], w, h); cv::Rect rect(det_result[j].rect[0], det_result[j].rect[1], w, h);
cv::Mat crop_img = srcimg(rect); cv::Mat crop_img = srcimg(rect);
feature_extracter.Run(crop_img, feature, cls_times); feature_extracter_ptr->Run(crop_img, feature, cls_times);
features.insert(features.end(), feature.begin(), feature.end()); features.insert(features.end(), feature.begin(), feature.end());
} }
// step4: get search result // step4: get search result
auto search_start = std::chrono::steady_clock::now(); auto search_start = std::chrono::steady_clock::now();
search_result = searcher.Search(features.data(), det_result.size()); search_result =
vector_searcher_ptr->Search(features.data(), det_result.size());
auto search_end = std::chrono::steady_clock::now(); auto search_end = std::chrono::steady_clock::now();
// nms for search result // nms for search result
for (int i = 0; i < det_result.size(); ++i) { for (int i = 0; i < det_result.size(); ++i) {
det_result[i].confidence = search_result.D[search_result.return_k * i]; det_result[i].confidence = search_result.D[search_result.return_k * i];
} }
NMSBoxes(det_result, searcher.GetThreshold(), rec_nms_thresold, indeices); NMSBoxes(det_result, vector_searcher_ptr->GetThreshold(), rec_nms_thresold,
indeices);
auto nms_end = std::chrono::steady_clock::now(); auto nms_end = std::chrono::steady_clock::now();
std::chrono::duration<float> search_diff = search_end - search_start; std::chrono::duration<float> search_diff = search_end - search_start;
search_times[1] += double(search_diff.count() * 1000); search_times[1] += double(search_diff.count() * 1000);
...@@ -289,12 +301,12 @@ int main(int argc, char **argv) { ...@@ -289,12 +301,12 @@ int main(int argc, char **argv) {
// print result // print result
if (not benchmark or (benchmark and idx >= warmup_iter)) if (not benchmark or (benchmark and idx >= warmup_iter))
PrintResult(img_path, det_result, indeices, searcher, search_result); PrintResult(img_path, det_result, indeices, vector_searcher_ptr,
search_result);
// for postprocess // for postprocess
batch_imgs.clear(); batch_imgs.clear();
img_paths.clear(); img_paths.clear();
det_bbox_num.clear();
det_result.clear(); det_result.clear();
feature.clear(); feature.clear();
features.clear(); features.clear();
...@@ -320,10 +332,12 @@ int main(int argc, char **argv) { ...@@ -320,10 +332,12 @@ int main(int argc, char **argv) {
config.config_file["Global"]["cpu_num_threads"].as<int>(); config.config_file["Global"]["cpu_num_threads"].as<int>();
int batch_size = config.config_file["Global"]["batch_size"].as<int>(); int batch_size = config.config_file["Global"]["batch_size"].as<int>();
std::vector<int> shape = std::vector<int> shape =
config.config_file["Global"]["image_shape"].as < std::vector < int >> (); config.config_file["Global"]["image_shape"].as<std::vector<int>>();
std::string det_shape = std::to_string(shape[0]); std::string det_shape = std::to_string(shape[0]);
for (int i = 1; i < shape.size(); ++i)
for (int i = 1; i < shape.size(); ++i) {
det_shape = det_shape + ", " + std::to_string(shape[i]); det_shape = det_shape + ", " + std::to_string(shape[i]);
}
AutoLogger autolog_det("Det", use_gpu, use_tensorrt, enable_mkldnn, AutoLogger autolog_det("Det", use_gpu, use_tensorrt, enable_mkldnn,
cpu_num_threads, batch_size, det_shape, presion, cpu_num_threads, batch_size, det_shape, presion,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册